|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析01
    2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析02
    2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年江苏省徐州市新沂市初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若△÷,则“△”可能是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是一个放置在水平桌面的锥形瓶,它的俯视图是(  )

    A. B. C. D.
    2.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为(  )
    A.35.578×103 B.3.5578×104
    C.3.5578×105 D.0.35578×105
    3.抛物线y=x2+2x+3的对称轴是( )
    A.直线x=1 B.直线x=-1
    C.直线x=-2 D.直线x=2
    4.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是(  )

    A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
    5.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )

    A. B. C. D.
    6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为

    A.12米 B.4米 C.5米 D.6米
    7.若△÷,则“△”可能是(  )
    A. B. C. D.
    8.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )

    A.正方体 B.球 C.圆锥 D.圆柱体
    9.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为(  )

    A.54° B.36° C.30° D.27°
    10.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)

    12.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.
    13.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    14.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是( )

    A.
    B.
    C.
    D.
    15.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得到△A1B1O,则翻滚2017次后AB中点M经过的路径长为______.

    16.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
    (1)试判断直线CD与⊙O的位置关系,并说明理由;
    (2)若AD=2,AC=,求AB的长.

    18.(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

    (1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.
    (2)请将条形统计图补充完整.
    (3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
    19.(8分)有这样一个问题:探究函数y=﹣2x的图象与性质.
    小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.
    下面是小东的探究过程,请补充完整:
    (1)函数y=﹣2x的自变量x的取值范围是_______;
    (2)如表是y与x的几组对应值
    x

    ﹣4
    ﹣3.5
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    3.5
    4

    y






    0


    m



    则m的值为_______;
    (3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
    (4)观察图象,写出该函数的两条性质________.

    20.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.求证:△ADF∽△ACG;若,求的值.

    21.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
    摸球总
    次数
    10
    20
    30
    60
    90
    120
    180
    240
    330
    450
    “和为8”出
    现的频数
    2
    10
    13
    24
    30
    37
    58
    82
    110
    150
    “和为8”出
    现的频率
    0.20
    0.50
    0.43
    0.40
    0.33
    0.31
    0.32
    0.34
    0.33
    0.33
    解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
    22.(10分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.

    23.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.

    (1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
    (2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
    (3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
    24.如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据俯视图是从上面看到的图形解答即可.
    【详解】
    锥形瓶从上面往下看看到的是两个同心圆.
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    2、B
    【解析】
    科学计数法是a×,且,n为原数的整数位数减一.
    【详解】
    解:35578= 3.5578×,
    故选B.
    【点睛】
    本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.
    3、B
    【解析】
    根据抛物线的对称轴公式:计算即可.
    【详解】
    解:抛物线y=x2+2x+3的对称轴是直线
    故选B.
    【点睛】
    此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.
    4、C
    【解析】
    【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
    【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
    ∴不等式y1>y2的解集是﹣3<x<0或x>2,
    故选C.
    【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
    5、B
    【解析】
    根据折叠前后对应角相等可知.
    解:设∠ABE=x,
    根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
    所以50°+x+x=90°,
    解得x=20°.
    故选B.
    “点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
    6、A
    【解析】
    试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).
    ∴(米).故选A.
    【详解】
    请在此输入详解!
    7、A
    【解析】
    直接利用分式的乘除运算法则计算得出答案.
    【详解】


    故选:A.
    【点睛】
    考查了分式的乘除运算,正确分解因式再化简是解题关键.
    8、D
    【解析】
    本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.
    【详解】
    根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.
    故选D.
    【点睛】
    此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.
    9、D
    【解析】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.
    10、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、>
    【解析】
    观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
    【详解】
    解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
    则乙地的日平均气温的方差小,
    故S2甲>S2乙.
    故答案为:>.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、1
    【解析】
    由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.
    【详解】
    解:∵两圆的半径分别为2和5,两圆内切,
    ∴d=R﹣r=5﹣2=1cm,
    故答案为1.
    【点睛】
    此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.
    13、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    【点睛】
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    14、B
    【解析】
    过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.
    【详解】
    解:过P点作PE⊥BP,垂足为P,交BC于E,

    ∵AP垂直∠B的平分线BP于P,
    ∠ABP=∠EBP,
    又知BP=BP,∠APB=∠BPE=90°,
    ∴△ABP≌△BEP,
    ∴AP=PE,
    ∵△APC和△CPE等底同高,
    ∴S△APC=S△PCE,
    ∴三角形PBC的面积=三角形ABC的面积=cm1,
    选项中只有B的长方形面积为cm1,
    故选B.
    15、(+896)π.
    【解析】
    由圆弧的弧长公式及正△ABO翻滚的周期性可得出答案.
    【详解】
    解:如图
    作⊥x轴于E, 易知OE=5, ,,
    观察图象可知3三次一个循环,一个循环点M的运动路径为=
    =,

    翻滚2017次后AB中点M经过的路径长为,
    故答案:
    【点睛】
    本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键.
    16、.
    【解析】
    试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
    【点睛】
    本题考查概率公式,掌握图形特点是解题关键,难度不大.

    三、解答题(共8题,共72分)
    17、(1)证明见解析(2)3
    【解析】
    (1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
    (2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
    【详解】
    相切,连接,
    ∵为的中点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,

    ∴直线与相切;
    方法:连接,
    ∵,,
    ∵,
    ∴,
    ∵是的切线,
    ∴,
    ∴,
    ∴,
    ∵为的中点,
    ∴,
    ∵为的直径,
    ∴,
    ∴.
    方法:∵,
    易得,
    ∴,
    ∴.
    【点睛】
    本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
    18、(1)5,20,80;(2)图见解析;(3).
    【解析】
    【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;
    (2)用乒乓球的人数除以总人数即可得;
    (3)用800乘以喜欢篮球人数所占的比例即可得;
    (4)根据(1)中求得的喜欢篮球的人数即可补全条形图;
    (5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.
    【详解】(1)调查的总人数为20÷40%=50(人),
    喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);
    (2)“乒乓球”的百分比==20%;
    (3)800×=80,
    所以估计全校学生中有80人喜欢篮球项目;
    (4)如图所示,

    (5)画树状图为:

    共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=.
    19、(1)任意实数;(2);(3)见解析;(4)①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.
    【解析】
    (1)没有限定要求,所以x为任意实数,
    (2)把x=3代入函数解析式即可,
    (3)描点,连线即可解题,
    (4)看图确定极点坐标,即可找到增减区间.
    【详解】
    解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;
    故答案为任意实数;
    (2)把x=3代入y=﹣2x得,y=﹣;
    故答案为﹣;
    (3)如图所示;
    (4)根据图象得,①当x<﹣2时,y随x的增大而增大;
    ②当x>2时,y随x的增大而增大.
    故答案为①当x<﹣2时,y随x的增大而增大;
    ②当x>2时,y随x的增大而增大.

    【点睛】
    本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.
    20、 (1)证明见解析;(2)1.
    【解析】
    (1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.
    (2)利用相似三角形的性质得到,由此即可证明.
    【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,
    ∵,∴△ADF∽△ACG.
    (2)解:∵△ADF∽△ACG,∴,
    又∵,∴,
    ∴1.
    21、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
    【解析】
    (1)利用频率估计概率结合表格中数据得出答案即可;
    (2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
    【详解】
    解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
    故出现“和为8”的概率是0.33.
    (2)x的值不能为7.理由:假设x=7,

    则P(和为9)=≠,所以x的值不能为7.
    【点睛】
    此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
    22、(1)见解析;(2)⊙O直径的长是4.
    【解析】
    (1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
    (2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
    【详解】
    证明:(1)连接BD,交AC于F,

    ∵DC⊥BE,
    ∴∠BCD=∠DCE=90°,
    ∴BD是⊙O的直径,
    ∴∠DEC+∠CDE=90°,
    ∵∠DEC=∠BAC,
    ∴∠BAC+∠CDE=90°,
    ∵弧BC=弧BC,
    ∴∠BAC=∠BDC,
    ∴∠BDC+∠CDE=90°,
    ∴BD⊥DE,
    ∴DE是⊙O切线;
    解:(2)∵AC∥DE,BD⊥DE,
    ∴BD⊥AC.
    ∵BD是⊙O直径,
    ∴AF=CF,
    ∴AB=BC=8,
    ∵BD⊥DE,DC⊥BE,
    ∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
    ∴△BDC∽△BED,
    ∴=,
    ∴BD2=BC•BE=8×10=80,
    ∴BD=4.
    即⊙O直径的长是4.
    【点睛】
    此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
    23、(1)DD′=1,A′F= 4﹣;(2);(1).
    【解析】
    (1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
    ②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
    (2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
    (1)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
    【详解】
    解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',
    ∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.
    ∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,
    ∴DD′=CD=1.
    ②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
    ∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.
    在Rt△CD′F中,∵tan∠D′CF=,
    ∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
    (2)如图②中,在Rt△A′CD′中,∵∠D′=90°,
    ∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
    ∴△A′DF∽△A′D′C,∴,∴,
    ∴DF=.
    同理可得△CDE∽△CB′A′,∴,∴,
    ∴ED=,∴EF=ED+DF=.
    (1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.
    ∵S△CEF=•EF•DC=•CE•FG,
    ∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.
    ∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,
    ∴AC2=AD•AF,∴AF=.
    ∵S△ACF=•AC•CF=•AF•CD,
    ∴AC•CF=AF•CD=.

    24、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.

    相关试卷

    江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了二次函数y=ax2+bx﹣2,图为小明和小红两人的解题过程,下列计算中,正确的是等内容,欢迎下载使用。

    江苏省江阴市夏港中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省江阴市夏港中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共25页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map