还剩18页未读,
继续阅读
2021-2022学年江西省新余市第一中学毕业升学考试模拟卷数学卷含解析
展开这是一份2021-2022学年江西省新余市第一中学毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,,则等于,已知等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
2.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为( )
A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
3.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是
已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
求证:∽.
证明:又,,,,∽.
A. B. C. D.
4.如图,在中,,,,则等于( )
A. B. C. D.
5.若关于x的不等式组无解,则a的取值范围是( )
A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
6.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里 B.45海里 C.20海里 D.30海里
7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B. C. D.
8.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cm B.41cm C.51cm D.61cm
9.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是( )
A. B. C. D.
10.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )
A.经过集中喷洒药物,室内空气中的含药量最高达到
B.室内空气中的含药量不低于的持续时间达到了
C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
11.如图,若a∥b,∠1=60°,则∠2的度数为( )
A.40° B.60° C.120° D.150°
12.实数﹣5.22的绝对值是( )
A.5.22 B.﹣5.22 C.±5.22 D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若,则=_____.
14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.
15.如图所示,数轴上点A所表示的数为a,则a的值是____.
16.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.
17.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
18.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
20.(6分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.
求证:(1)AE=BF;(2)AE⊥BF.
21.(6分) (1)计算:(a-b)2-a(a-2b);
(2)解方程:=.
22.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
23.(8分)先化简,再求值,,其中x=1.
24.(10分)如图1,在长方形ABCD中,,,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象.
(1)求出a值;
(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;
(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?
25.(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:
请根据以上统计图提供的信息,解答下列问题:
(1)共抽取 名学生进行问卷调查;
(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.
26.(12分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
(1)求抛物线的顶点C的坐标及A,B两点的坐标;
(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
27.(12分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故A不正确;
B、既是轴对称图形,又是中心对称图形,故B正确;
C、是轴对称图形,不是中心对称图形,故C不正确;
D、既不是轴对称图形,也不是中心对称图形,故D不正确.
故选B.
【点睛】
本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.
2、A
【解析】
直接利用圆周角定理结合三角形的外角的性质即可得.
【详解】
连接BE,如图所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故选:A.
【点睛】
考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
3、B
【解析】
根据平行线的性质可得到两组对应角相等,易得解题步骤;
【详解】
证明:,
,
又,
,
∽.
故选B.
【点睛】
本题考查了相似三角形的判定与性质;关键是证明三角形相似.
4、A
【解析】
分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
详解:在Rt△ABC中,∵AB=10、AC=8,
∴BC=,
∴sinA=.
故选:A.
点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.
5、A
【解析】
【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.
【详解】∵不等式组无解,
∴a﹣4≥3a+2,
解得:a≤﹣3,
故选A.
【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.
6、D
【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
故选:D.
【点睛】
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
7、C
【解析】
设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
【详解】
解:设大马有x匹,小马有y匹,由题意得:,
故选C.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
8、C
【解析】
∵DG是AB边的垂直平分线,
∴GA=GB,
△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
∴△ABC的周长=AC+BC+AB=51cm,
故选C.
9、D
【解析】
根据要求画出图形,即可解决问题.
【详解】
解:根据题意,作出图形,如图:
观察图象可知:A2(4,2);
故选:D.
【点睛】
本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.
10、C
【解析】
利用图中信息一一判断即可.
【详解】
解: A、正确.不符合题意.
B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
D、正确.不符合题意,
故选C.
【点睛】
本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
11、C
【解析】
如图:
∵∠1=60°,
∴∠3=∠1=60°,
又∵a∥b,
∴∠2+∠3=180°,
∴∠2=120°,
故选C.
点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.
12、A
【解析】
根据绝对值的性质进行解答即可.
【详解】
实数﹣5.1的绝对值是5.1.
故选A.
【点睛】
本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
=.
14、22.5°
【解析】
四边形ABCD是矩形,
AC=BD,OA=OC,OB=OD,
OA=OB═OC,
∠OAD=∠ODA,∠OAB=∠OBA,
∠AOE=∠OAD+∠ODA=2∠OAD,
∠EAC=2∠CAD,
∠EAO=∠AOE,
AE⊥BD,
∠AEO=90°,
∠AOE=45°,
∠OAB=∠OBA=67.5°,
即∠BAE=∠OAB﹣∠OAE=22.5°.
考点:矩形的性质;等腰三角形的性质.
15、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
【点睛】
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
16、y=2(x+1)2+1.
【解析】
原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);
可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.
17、
【解析】
分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
详解:∵平均数是12,
∴这组数据的和=12×7=84,
∴被墨汁覆盖三天的数的和=84−4×12=36,
∵这组数据唯一众数是13,
∴被墨汁覆盖的三个数为:10,13,13,
故答案为
点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
18、甲.
【解析】
乙所得环数的平均数为:=5,
S2=[+++…+]
=[++++]
=16.4,
甲的方差<乙的方差,所以甲较稳定.
故答案为甲.
点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(30+30)米.
【解析】
解:设建筑物AB的高度为x米
在Rt△ABD 中,∠ADB=45°
∴AB=DB=x
∴BC=DB+CD= x+60
在Rt△ABC 中,∠ACB=30°,
∴tan∠ACB=
∴
∴
∴x=30+30
∴建筑物AB的高度为(30+30)米
20、见解析
【解析】
(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
【详解】
解:(1)证明:在△AEO与△BFO中,
∵Rt△OAB与Rt△EOF等腰直角三角形,
∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
∴△AEO≌△BFO,
∴AE=BF;
( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO
由(1)知:∠OAC=∠OBF,
∴∠BDA=∠AOB=90°,
∴AE⊥BF.
21、 (1) b2 (2)1
【解析】
分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.
详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;
(2) 解:, 解得:x=1,
经检验 x=1为原方程的根, 所以原方程的解为x=1.
点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.
22、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【解析】
【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
【详解】(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得
,解得:,
∴该一次函数解析式为y=﹣x+1;
(2)当y=﹣x+1=8时,
解得x=520,
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米,
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
23、1.
【解析】
先根据分式的运算法则进行化简,再代入求值.
【详解】
解:原式=()×=×
=;
将x=1代入原式==1.
【点睛】
分式的化简求值
24、(1)6;(2);;(3)10或;
【解析】
(1)根据图象变化确定a秒时,P点位置,利用面积求a;
(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;
(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.
【详解】
(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.
,
∴AP=6,
则a=6;
(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6,
∵Q点路程总长为34cm,第6秒时已经走12cm,
故点Q还剩的路程为y2=34﹣12﹣;
(3)当P、Q两点相遇前相距3cm时,
﹣(2x﹣6)=3,解得x=10,
当P、Q两点相遇后相距3cm时,
(2x﹣6)﹣()=3,解得x=,
∴当x=10或时,P、Q两点相距3cm
【点睛】
本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式.
25、(1)1;(2)详见解析;(3)750;(4).
【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;
(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;
(3)计算足球的百分比,根据样本估计总体,即可解答;
(4)利用概率公式计算即可.
【详解】
(1)30÷15%=1(人).
答:共抽取1名学生进行问卷调查;
故答案为1.
(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.
如图所示:
(3)3000×0.25=750(人).
答:全校学生喜欢足球运动的人数为750人.
(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)
共有25种等可能的结果数,选同一项目的结果数为5,
所以甲乙两人中有且选同一项目的概率P(A)=.
【点睛】
本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
26、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
【解析】
分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
(Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
联立,
解得:或;
(II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
将A(1,4),C(2,0)代入y=kx+b中,∴,
解得:,
∴直线AC的解析式为y=﹣2x+1.
当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
∴当点E在△DAC内时,<t<5;
(III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
由直线y=x+2与x轴交于点D,与y轴交于点F,
得D(﹣2,0),F(0,2),∴OD=OF=2.
∵∠FOD=90°,∴∠OFD=∠ODF=45°.
∵OC=OF=2,∠FOC=90°,
∴CF==2,∠OFC=∠OCF=45°,
∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
∴PM=2CF=1.
∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
在Rt△PGM中,sin∠PGM=, ∴PG===3.
∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
∵P(m,n)在抛物线y=x2﹣1x+9上,
∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.
点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.
27、
【解析】
过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,
∵,
∴AD====x,
由AD+BD=AB可得x+x=10,
解得:x=5﹣5,
答:飞机飞行的高度为(5﹣5)km.
相关试卷
2022年江西省宜春九中学毕业升学考试模拟卷数学卷含解析:
这是一份2022年江西省宜春九中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析:
这是一份2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析,共15页。试卷主要包含了下列交通标志是中心对称图形的为,下列各组数中,互为相反数的是,计算的结果为,某一公司共有51名员工等内容,欢迎下载使用。
2021-2022学年天津二十五中学毕业升学考试模拟卷数学卷含解析:
这是一份2021-2022学年天津二十五中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。