终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2020年全国中考数学试题精选分类(7)三角形(含解析)

    立即下载
    加入资料篮
    2020年全国中考数学试题精选分类(7)三角形(含解析)第1页
    2020年全国中考数学试题精选分类(7)三角形(含解析)第2页
    2020年全国中考数学试题精选分类(7)三角形(含解析)第3页
    还剩67页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年全国中考数学试题精选分类(7)三角形(含解析)

    展开

    这是一份2020年全国中考数学试题精选分类(7)三角形(含解析),共70页。
    2020年全国中考数学试题精选分类(7)三角形
    一.选择题(共35小题)
    1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有(  )

    A.①②③ B.②③④ C.①②④ D.①③④
    2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为(  )

    A.x2+102=(x+1)2 B.(x﹣1)2+52=x2
    C.x2+52=(x+1)2 D.(x﹣1)2+102=x2
    3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是(  )

    A.50° B.60° C.70° D.80°
    4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是(  )

    A.14 B.20 C.22 D.28
    5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是(  )

    A.25° B.20° C.30° D.15°
    6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为(  )

    A. B.2 C.2 D.3
    7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是(  )

    A. B. C. D.
    8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是(  )
    A.2 B.4 C.5 D.6
    9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为(  )

    A.85° B.75° C.65° D.60°
    11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=(  )

    A.16° B.28° C.44° D.45°
    12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于(  )

    A.a B.b C. D.c
    13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是(  )

    A.50.5寸 B.52寸 C.101寸 D.104寸
    14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个(  )

    A.等腰直角三角形 B.等腰三角形
    C.直角三角形 D.等边三角形
    15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为(  )

    A.50° B.55° C.70° D.75°
    16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是(  )

    A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c2
    17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为(  )

    A.25cm2 B.cm2 C.50cm2 D.75cm2
    18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是(  )

    A.l是线段EH的垂直平分线
    B.l是线段EQ的垂直平分线
    C.l是线段FH的垂直平分线
    D.EH是l的垂直平分线
    19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是(  )
    A.55°,55° B.70°,40°或70°,55°
    C.70°,40° D.55°,55°或70°,40°
    20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是(  )

    A.3 B.4 C.5 D.6
    21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为(  )

    A.1.7 B.1.8 C.2.2 D.2.4
    22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A=(  )

    A.40° B.50° C.55° D.60°
    23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OAn的长度为(  )

    A.()n B.()n﹣1 C.()n D.()n﹣1
    24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是(  )

    A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4
    25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为(  )

    A. B. C. D.
    26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
    ①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有(  )个.

    A.4 B.3 C.2 D.1
    27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是(  )

    A.从点P向北偏西45°走3km到达l
    B.公路l的走向是南偏西45°
    C.公路l的走向是北偏东45°
    D.从点P向北走3km后,再向西走3km到达l
    28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是(  )

    A.1 B. C. D.
    29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是(  )

    A.120° B.130° C.145° D.150°
    30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为(  )

    A.6 B.9 C.6 D.3
    31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是(  )

    A.50° B.40° C.30° D.20°
    32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=(  )

    A. B. C.a﹣b D.b﹣a
    33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是(  )

    A.1+ B.2+ C.5﹣ D.
    34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道(  )

    A.△ABC的周长 B.△AFH的周长
    C.四边形FBGH的周长 D.四边形ADEC的周长
    35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为(  )

    A.2 B.5 C.4 D.10
    二.填空题(共5小题)
    36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是   .

    37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则Sn等于   .(用含有正整数n的式子表示)

    38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为   .

    39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为   .

    40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=   .

    三.解答题(共10小题)
    41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.

    42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.

    (1)填空:与∠CAG相等的角是   ;
    (2)用等式表示线段AD与BD的数量关系,并证明;
    (3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.
    43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.

    44.(2020•山西)阅读与思考
    如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
    ×年×月×日星期日
    没有直角尺也能作出直角
    今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?
    办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.

    办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.
    我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……
    任务:
    (1)填空:“办法一”依据的一个数学定理是   ;
    (2)根据“办法二”的操作过程,证明∠RCS=90°;
    (3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);
    ②说明你的作法所依据的数学定理或基本事实(写出一个即可).
    45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.
    (1)填空:AO的长为   ,AB的长为   ;
    (2)当t=1时,求点N的坐标;
    (3)请直接写出MN的长为   (用含t的代数式表示);
    (4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为   .

    46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:
    (a+b)2=a2+2ab+b2.
    把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.

    (1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:   .
    (2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;
    (3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON=CH.
    47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.
    (2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.

    48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).
    (1)AP的长为   cm(用含x的代数式表示).
    (2)当点D落在边BC上时,求x的值.
    (3)求y关于x的函数解析式,并写出自变量x的取值范围.

    49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.
    (1)①请叙述勾股定理;
    ②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)

    (2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有   个;



    ②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;
    (3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)
    ①a2+b2+c2+d2=   ;
    ②b与c的关系为   ,a与d的关系为   .

    50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
    【问题解决】
    如图1,若点D在边BC上,求证:CE+CF=CD;
    【类比探究】
    如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

    参考答案与试题解析
    一.选择题(共35小题)
    1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有(  )

    A.①②③ B.②③④ C.①②④ D.①③④
    【答案】D
    【解答】解:如图,过点O作OH∥BC交AE于点H,过点O作OQ⊥BC交BC于点Q,过点B作BK⊥OM交OM的延长线于点K,

    ∵四边形ABCD是正方形,
    ∴,
    ∴OB=OC,∠BOC=90°,
    ∴∠BOM+∠MOC=90°.
    ∵OP⊥OF,
    ∴∠MON=90°,
    ∴∠CON+∠MOC=90°,
    ∴∠BOM=∠CON,
    ∴△BOM≌△CON(ASA),
    ∴S△BOM=S△CON,
    ∴,
    ∴,
    ∴.
    ∵CE=2BE,
    ∴,
    ∴.
    ∵BF⊥AE,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    ∵AD∥BC,
    ∴,故①正确;
    ∵OH∥BC,
    ∴,
    ∴.
    ∵∠HGO=∠EGB,
    ∴△HOG≌△EBG(AAS),
    ∴OG=BG,故④正确;
    ∵OQ2+MQ2=OM2,
    ∴,
    ∴,故③正确;
    ∵,
    即,
    ∴,
    ∴,故②错误;
    ∴正确的有①③④.
    故选:D.
    2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为(  )

    A.x2+102=(x+1)2 B.(x﹣1)2+52=x2
    C.x2+52=(x+1)2 D.(x﹣1)2+102=x2
    【答案】B
    【解答】解:设芦苇长x尺,由题意得:
    (x﹣1)2+52=x2,
    故选:B.
    3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是(  )

    A.50° B.60° C.70° D.80°
    【答案】D
    【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,
    ∴∠C=80°,
    ∵DE∥BC,
    ∴∠AED=∠C=80°,
    故选:D.
    4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是(  )

    A.14 B.20 C.22 D.28
    【答案】B
    【解答】解:∵BD和CE分别是△ABC的中线,
    ∴DE=BC,DE∥BC,
    ∵M和N分别是OB和OC的中点,OB=8,OC=6,
    ∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,
    ∴四边形MNDE为平行四边形,
    ∵BD⊥CE,
    ∴平行四边形MNDE为菱形,
    ∴BC==10,
    ∴DE=MN=EM=DN=5,
    ∴四边形MNDE的周长为20,
    故选:B.
    5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是(  )

    A.25° B.20° C.30° D.15°
    【答案】D
    【解答】解:∵AB=AC,∠C=∠ABC=65°,
    ∴∠A=180°﹣65°×2=50°,
    ∵MN垂直平分AB,
    ∴AD=BD,
    ∴∠A=∠ABD=50°,
    ∴∠DBC=∠ABC﹣∠ABD=15°,
    故选:D.
    6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为(  )

    A. B.2 C.2 D.3
    【答案】A
    【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,
    在Rt△AHB中,
    ∵∠ABC=60°,AB=2,
    ∴BH=1,AH=,
    在Rt△AHC中,∠ACB=45°,
    ∴AC===,

    ∵点D为BC中点,
    ∴BD=CD,
    在△BFD与△CKD中,

    ∴△BFD≌△CKD(AAS),
    ∴BF=CK,
    延长AE,过点C作CN⊥AE于点N,
    可得AE+BF=AE+CK=AE+EN=AN,
    在Rt△ACN中,AN<AC,
    当直线l⊥AC时,最大值为,
    综上所述,AE+BF的最大值为.
    故选:A.
    7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是(  )

    A. B. C. D.
    【答案】B
    【解答】解:连接BC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACE+∠BCF=90°,
    ∵BF⊥CD,
    ∴∠CFB=90°,
    ∴∠CBF+∠BCF=90°,
    ∴∠ACE=∠CBF,
    ∵AE⊥CD,
    ∴∠AEC=∠CFB=90°,
    ∴△ACE∽△CBF,
    ∴,
    ∵FB=FE=2,FC=1,
    ∴CE=CF+EF=3,BC===,
    ∴=,
    ∴AC=,
    故选:B.

    8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是(  )
    A.2 B.4 C.5 D.6
    【答案】A
    【解答】解:∵在△ABC中,AB=1,BC=,
    ∴﹣1<AC<+1,
    ∵﹣1<2<+1,4>+1,5>+1,6>+1,
    ∴AC的长度可以是2,
    故选项A正确,选项B、C、D不正确;
    故选:A.
    9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    【答案】C
    【解答】解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.

    ∵∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△BAD≌△CAE(SAS),
    ∴EC=BD,∠BDA=∠AEC,故①正确
    ∵∠DOF=∠AOE,
    ∠DFO=∠EAO=90°,
    ∴BD⊥EC,故②正确,
    ∵△BAD≌△CAE,AM⊥BD,AN⊥EC,
    ∴AM=AN,
    ∴FA平分∠EFB,
    ∴∠AFE=45°,故④正确,
    若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,
    故选:C.
    10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为(  )

    A.85° B.75° C.65° D.60°
    【答案】B
    【解答】解:如图所示,

    ∵∠BCD=60°,∠BCA=45°,
    ∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,
    ∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,
    故选:B.
    11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=(  )

    A.16° B.28° C.44° D.45°
    【答案】C
    【解答】解:延长ED,交AC于F,
    ∵△ABC是等腰三角形,∠ABC=124°,
    ∴∠A=∠ACB=28°,
    ∵AB∥DE,
    ∴∠CFD=∠A=28°,
    ∵∠CDE=∠CFD+∠ACD=72°,
    ∴∠ACD=72°﹣28°=44°,
    故选:C.

    12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于(  )

    A.a B.b C. D.c
    【答案】D
    【解答】解:过点C作CE⊥AD于E,如图所示:
    则四边形ABCE是矩形,
    ∴AB=CE,∠CED=∠DAP=90°,
    ∵∠BPC=45°,∠APD=75°,
    ∴∠CPD=180°﹣45°﹣75°=60°,
    ∵CP=DP=a,
    ∴△CPD是等边三角形,
    ∴CD=DP,∠PDC=60°,
    ∵∠ADP=90°﹣75°=15°,
    ∴∠EDC=15°+60°=75°,
    ∴∠EDC=∠APD,
    在△EDC和△APD中,

    ∴△EDC≌△APD(AAS),
    ∴CE=AD,
    ∴AB=AD=c,
    故选:D.

    13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是(  )

    A.50.5寸 B.52寸 C.101寸 D.104寸
    【答案】C
    【解答】解:如图2所示:
    由题意得:OA=OB=AD=BC,
    设OA=OB=AD=BC=r寸,
    则AB=2r,DE=10,OE=CD=1,AE=r﹣1,
    在Rt△ADE中,
    AE2+DE2=AD2,即(r﹣1)2+102=r2,
    解得:r=50.5,
    ∴2r=101(寸),
    ∴AB=101寸,
    故选:C.

    14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个(  )

    A.等腰直角三角形 B.等腰三角形
    C.直角三角形 D.等边三角形
    【答案】A
    【解答】解:如图,过点C作CD∥AE交AB于点D,
    ∴∠DCA=∠EAC=35°,

    ∵AE∥BF,
    ∴CD∥BF,
    ∴∠BCD=∠CBF=55°,
    ∴∠ACB=∠ACD+∠BCD=35°+55°=90°,
    ∴△ABC是直角三角形.
    ∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,
    ∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,
    ∴CA=CB,
    ∴△ABC是等腰直角三角形.
    故选:A.
    15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为(  )

    A.50° B.55° C.70° D.75°
    【答案】B
    【解答】解:∵∠ACB=75°,∠ECD=50°,
    ∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,
    ∵AB∥CE,
    ∴∠A=∠ACE=55°,
    故选:B.
    16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是(  )

    A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c2
    【答案】A
    【解答】解:设EF=x,DF=y,
    ∵AD,BE分别是BC,AC边上的中线,
    ∴点F为△ABC的重心,AE=AC=b,BD=a,
    ∴AF=2DF=2y,BF=2EF=2x,
    ∵AD⊥BE,
    ∴∠AFB=∠AFE=∠BFD=90°,
    在Rt△AFB中,4x2+4y2=c2,①
    在Rt△AEF中,x2+4y2=b2,②
    在Rt△BFD中,4x2+y2=a2,③
    ②+③得5x2+5y2=(a2+b2),
    ∴4x2+4y2=(a2+b2),④
    ①﹣④得c2﹣(a2+b2)=0,
    即a2+b2=5c2.
    故选:A.
    17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为(  )

    A.25cm2 B.cm2 C.50cm2 D.75cm2
    【答案】C
    【解答】解:如图:设OF=EF=FG=x(cm),

    ∴OE=OH=2x,
    在Rt△EOH中,EH=2x,
    由题意EH=20cm,
    ∴20=2x,
    ∴x=5,
    ∴阴影部分的面积=(5)2=50(cm2)
    故选:C.
    18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是(  )

    A.l是线段EH的垂直平分线
    B.l是线段EQ的垂直平分线
    C.l是线段FH的垂直平分线
    D.EH是l的垂直平分线
    【答案】A
    【解答】解:如图:

    A.∵直线l为线段FG的垂直平分线,
    ∴FO=GO,l⊥FG,
    ∵EF=GH,
    ∴EF+FO=OG+GH,
    即EO=OH,
    ∴l为线段EH的垂直平分线,故此选项正确;

    B.∵EO≠OQ,
    ∴l不是线段EQ的垂直平分线,故此选项错误;

    C.∵FO≠OH,
    ∴l不是线段FH的垂直平分线,故此选项错误;

    D.∵l为直线,EH不能平分直线l,
    ∴EH不是l的垂直平分线,故此选项错误;
    故选:A.
    19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是(  )
    A.55°,55° B.70°,40°或70°,55°
    C.70°,40° D.55°,55°或70°,40°
    【答案】D
    【解答】解:分情况讨论:
    (1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;
    (2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.
    故选:D.
    20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是(  )

    A.3 B.4 C.5 D.6
    【答案】A
    【解答】解:∵CH⊥AB,垂足为H,
    ∴∠CHB=90°,
    ∵点M是BC的中点.
    ∴MH=BC,
    ∵BC的最大值是直径的长,⊙O的半径是3,
    ∴MH的最大值为3,
    故选:A.
    21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为(  )

    A.1.7 B.1.8 C.2.2 D.2.4
    【答案】A
    【解答】解:∵点G为△ABC的重心,
    ∴AE=BE,BF=CF,
    ∴EF==1.7,
    故选:A.
    22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A=(  )

    A.40° B.50° C.55° D.60°
    【答案】D
    【解答】解:∵∠ACD是△ABC的外角,
    ∴∠ACD=∠B+∠A,
    ∴∠A=∠ACD﹣∠B,
    ∵∠ACD=110°,∠B=50°,
    ∴∠A=60°,
    故选:D.
    23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OAn的长度为(  )

    A.()n B.()n﹣1 C.()n D.()n﹣1
    【答案】B
    【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,
    ∴OA2=;
    ∵△OA2A3为等腰直角三角形,
    ∴OA3=2=;
    ∵△OA3A4为等腰直角三角形,
    ∴OA4=2=.
    ∵△OA4A5为等腰直角三角形,
    ∴OA5=4=,
    ……
    ∴OAn的长度为()n﹣1.
    故选:B.
    24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是(  )

    A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4
    【答案】B
    【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,
    当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;
    当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;
    当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,
    ∵,
    ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,
    故选:B.
    25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为(  )

    A. B. C. D.
    【答案】D
    【解答】解:由勾股定理得:AC==,
    ∵S△ABC=3×3﹣=3.5,
    ∴,
    ∴,
    ∴BD=,
    故选:D.
    26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
    ①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有(  )个.

    A.4 B.3 C.2 D.1
    【答案】B
    【解答】解:∵∠AOB=∠COD=36°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,
    即∠AOC=∠BOD,
    在△AOC和△BOD中,

    ∴△AOC≌△BOD(SAS),
    ∴∠OCA=∠ODB,AC=BD,故②正确;

    ∵∠OAC=∠OBD,
    由三角形的外角性质得:
    ∠AMB+∠OBD=∠OAC+∠AOB,
    ∴∠AMB=∠AOB=36°,故①正确;

    作OG⊥AM于G,OH⊥DM于H,如图所示,

    则∠OGA=∠OHB=90°,
    ∵△AOC≌△BOD,
    ∴OG=OH,
    ∴MO平分∠AMD,故④正确;

    假设OM平分∠AOD,则∠DOM=∠AOM,
    在△AMO与△DMO中,

    ∴△AMO≌△DMO(ASA),
    ∴AO=OD,
    ∵OC=OD,
    ∴OA=OC,
    而OA<OC,故③错误;
    正确的个数有3个;
    故选:B.
    27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是(  )

    A.从点P向北偏西45°走3km到达l
    B.公路l的走向是南偏西45°
    C.公路l的走向是北偏东45°
    D.从点P向北走3km后,再向西走3km到达l
    【答案】A
    【解答】解:如图,
    由题意可得△PAB是腰长6km的等腰直角三角形,
    则AB=6km,
    如图所示,过P点作AB的垂线PC,
    则PC=3km,
    则从点P向北偏西45°走3km到达l,选项A错误;
    则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;
    则从点P向北走3km后到达BP中点D,此时CD为△PAB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.
    故选:A.

    28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是(  )

    A.1 B. C. D.
    【答案】D
    【解答】解:∵D,E,F分别是AB,BC,CA的中点,
    ∴DE=AC,DF=BC,EF=AB,
    ∴=,
    ∴△DEF∽△ABC,
    ∴=()2=()2=,
    ∵等边三角形ABC的面积为1,
    ∴△DEF的面积是,
    故选:D.
    29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是(  )

    A.120° B.130° C.145° D.150°
    【答案】B
    【解答】解:∵AB=AC,∠C=65°,
    ∴∠B=∠C=65°,
    ∵DF∥AB,
    ∴∠CDE=∠B=65°,
    ∴∠FEC=∠CDE+∠C=65°+65°=130°;
    故选:B.
    30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为(  )

    A.6 B.9 C.6 D.3
    【答案】D
    【解答】解:连接BD交AC于O,
    ∵AD=CD,AB=BC,
    ∴BD垂直平分AC,
    ∴BD⊥AC,AO=CO,
    ∵AB=BC,
    ∴∠ACB=∠BAC=30°,
    ∵AC=AD=CD,
    ∴△ACD是等边三角形,
    ∴∠DAC=∠DCA=60°,
    ∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,
    ∵AB=BC=,
    ∴AD=CD=AB=3,
    ∴四边形ABCD的面积=2×=3,
    故选:D.

    31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是(  )

    A.50° B.40° C.30° D.20°
    【答案】D
    【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,
    ∴∠B=40°,
    ∵BC=BD,
    ∴∠BCD=∠BDC=(180°﹣40°)=70°,
    ∴∠ACD=90°﹣70°=20°,
    故选:D.
    32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=(  )

    A. B. C.a﹣b D.b﹣a
    【答案】C
    【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,
    ∴∠ABC=∠C=2∠ABD=72°,
    ∴∠ABD=36°=∠A,
    ∴BD=AD,
    ∴∠BDC=∠A+∠ABD=72°=∠C,
    ∴BD=BC,
    ∵AB=AC=a,BC=b,
    ∴CD=AC﹣AD=a﹣b,
    故选:C.
    33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是(  )

    A.1+ B.2+ C.5﹣ D.
    【答案】B
    【解答】解:∵四边形EFGH为正方形,
    ∴∠EGH=45°,∠FGH=90°,
    ∵OG=GP,
    ∴∠GOP=∠OPG=67.5°,
    ∴∠PBG=22.5°,
    又∵∠DBC=45°,
    ∴∠GBC=22.5°,
    ∴∠PBG=∠GBC,
    ∵∠BGP=∠BGC=90°,BG=BG,
    ∴△BPG≌△BCG(ASA),
    ∴PG=CG.
    设OG=PG=CG=x,
    ∵O为EG,BD的交点,
    ∴EG=2x,FG=x,
    ∵四个全等的直角三角形拼成“赵爽弦图”,
    ∴BF=CG=x,
    ∴BG=x+x,
    ∴BC2=BG2+CG2==,
    ∴=.
    故选:B.
    34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道(  )

    A.△ABC的周长 B.△AFH的周长
    C.四边形FBGH的周长 D.四边形ADEC的周长
    【答案】A
    【解答】解:∵△GFH为等边三角形,
    ∴FH=GH,∠FHG=60°,
    ∴∠AHF+∠GHC=120°,
    ∵△ABC为等边三角形,
    ∴AB=BC=AC,∠ACB=∠A=60°,
    ∴∠GHC+∠HGC=120°,
    ∴∠AHF=∠HGC,
    ∴△AFH≌△CHG(AAS),
    ∴AF=CH.
    ∵△BDE和△FGH是两个全等的等边三角形,
    ∴BE=FH,
    ∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
    =(BD+DF+AF)+(CE+BE),
    =AB+BC.
    ∴只需知道△ABC的周长即可.
    故选:A.
    35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为(  )

    A.2 B.5 C.4 D.10
    【答案】A
    【解答】解:过A作AH⊥BC于H,
    ∵D是AB的中点,
    ∴AD=BD,
    ∵DE∥BC,
    ∴AE=CE,
    ∴DE=BC,
    ∵DF⊥BC,
    ∴DF∥AH,DF⊥DE,
    ∴BF=HF,
    ∴DF=AH,
    ∵△DFE的面积为1,
    ∴DE•DF=1,
    ∴DE•DF=2,
    ∴BC•AH=2DE•2DF=4×2=8,
    ∴AB•AC=8,
    ∵AB=CE,
    ∴AB=AE=CE=AC,
    ∴AB•2AB=8,
    ∴AB=2(负值舍去),
    ∴AC=4,
    ∴BC==2.
    故选:A.

    二.填空题(共5小题)
    36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是  .

    【答案】.
    【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,
    ∴AC∥A1C1,
    ∴△ABC∽△A1BD,
    ∵S△A1BD:S四边形ACDA1=4:5,
    ∴S:S△ABC=4:9,
    ∴A1B:AB=2:3,
    ∵AB=4,
    ∴A1B=,
    ∴AA1=4﹣=.
    故答案为:.

    37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则Sn等于 ×4n﹣1 .(用含有正整数n的式子表示)

    【答案】.
    【解答】解:设△ADC的面积为S,
    由题意,AC∥B1B2,AC=AB=2,B1B2=4,
    ∴△ACD∽△B2B1D,
    ∴=()2=,
    ∴=4S,
    ∵==,CB1=2,
    ∴DB1=,
    同法D1B2=,
    ∵DB1∥D1B2,
    ∴==,
    ∴=,
    ∴S1=S+=,
    ∵△A1C1D1∽△ACD,
    ∴=()2=,
    ∴=4S,
    同法可得,=,
    ∴S2=4S+==×4,

    Sn=×4n﹣1,
    ∵S=×2×=,
    ∴Sn=×4n﹣1.
    故答案为:.
    38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为  .

    【答案】.
    【解答】解:在矩形OAA1B中,∵OA=3,AA1=2,
    ∴∠A=90°,
    ∴OA1===,
    ∵==,
    ∴=,
    ∵∠OA1A2=∠A=90°,
    ∴△OA1A2∽△OAA1,
    ∴∠A1OA2=∠AOA1,
    ∵A1B∥OA,
    ∴∠CA1O=∠AOA1,
    ∴∠COA1=∠CA1O,
    ∴OC=CA1,
    ∵∠A2OA1+∠OA2A1=90°,∠OA1C+∠A2A1C=90°,
    ∴∠CA2A1=∠CA1A2,
    ∴CA1=CA2=OC,
    同法可证OC1=A3C1,
    ∴CC1∥A2A3,CC1=A2A3,
    ∴=,
    ∵A1A2=,
    ∴OA2===,
    ∴A2A3=×=,
    ∴CC1=A2A3=,
    ∴==××=,
    同法可证=S,
    由题意,===,
    ∵△C2A3C1∽△C1A2C,
    ∴相似比为:=,
    ∴=()2×=,=,…,
    由此规律可得,△C2019C2020A2022的面积为.
    故答案为.

    39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为 3﹣2 .

    【答案】见试题解答内容
    【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,过点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.

    ∵∠AMD=90°,AD=4,OA=OD,
    ∴OM=AD=2,
    ∵AB∥CD,
    ∴∠GCF=∠B=60°,
    ∴∠DGO=∠CGE=30°,
    ∵AD=BC,
    ∴∠DAB=∠B=60°,
    ∴∠ADC=∠BCD=120°,
    ∴∠DOG=30°=∠DGO,
    ∴DG=DO=2,
    ∵CD=4,
    ∴CG=2,
    ∴OG=2,GF=,OF=3,
    ∴ME≥OF﹣OM=3﹣2,
    ∴当O,M,E共线时,ME的值最小,最小值为3﹣2.
    40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2= 20 .

    【答案】20.
    【解答】解:∵AC⊥BD,
    ∴∠AOD=∠AOB=∠BOC=∠COD=90°,
    由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,
    AD2+BC2=AO2+DO2+BO2+CO2,
    ∴AB2+CD2=AD2+BC2,
    ∵AD=2,BC=4,
    ∴AB2+CD2=22+42=20.
    故答案为:20.
    三.解答题(共10小题)
    41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.

    【答案】见解析.
    【解答】证明:∵∠BAE=∠CAD,
    ∴∠BAE+∠BAD=∠CAD+∠BAD,
    即∠DAE=∠CAB,
    在△ADE和△ACB中,

    ∴△ADE≌△ACB(SAS),
    ∴DE=CB.
    42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.

    (1)填空:与∠CAG相等的角是 ∠CGA ;
    (2)用等式表示线段AD与BD的数量关系,并证明;
    (3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.
    【答案】(1)∠CGA;
    (2)AD=BD,理由见解析;
    (3).
    【解答】解:(1)∵CA=CG,
    ∴∠CAG=∠CGA,
    故答案为:∠CGA;
    (2)AD=BD,理由是:
    如图,在CG上取点M,使GM=AF,连接AM,EM,
    ∵∠CAG=∠CGA,AG=GA,
    ∴△AGM≌△GAF(SAS),
    ∴AM=GF,∠AFG=∠AMG,
    ∵GF=DE,∠AFG=∠CDE,
    ∴AM=DE,∠AMG=∠CDE,
    ∴AM∥DE,
    ∴四边形AMED为平行四边形,
    ∴AD=EM,AD∥EM,
    ∵BE=CE,即点E为BC中点,
    ∴ME为△BCD的中位线,
    ∴AD=ME=BD;
    (3)延长BA至点N,使AD=AN,连接CN,
    ∵∠BAC=∠NAC=90°,
    ∴AC垂直平分DN,
    ∴CD=CN,
    ∴∠ACD=∠ACN,
    设∠ACD=α=∠ACN,则∠ABC=2α,
    则∠ANC=90°﹣α,
    ∴∠BCN=180°﹣2α﹣(90°﹣α)=90°﹣α,
    ∴BN=BC,即△BCN为等腰三角形,
    设AD=1,则AN=1,BD=2,
    ∴BC=BN=4,AB=3,
    ∴AC=,
    ∴.

    43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.

    【答案】见试题解答内容
    【解答】证明:连接AC,

    在△AEC与△AFC中

    ∴△AEC≌△AFC(SSS),
    ∴∠CAE=∠CAF,
    ∵∠B=∠D=90°,
    ∴CB=CD.
    44.(2020•山西)阅读与思考
    如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
    ×年×月×日星期日
    没有直角尺也能作出直角
    今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?
    办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.

    办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.
    我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……
    任务:
    (1)填空:“办法一”依据的一个数学定理是 勾股定理的逆定理 ;
    (2)根据“办法二”的操作过程,证明∠RCS=90°;
    (3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);
    ②说明你的作法所依据的数学定理或基本事实(写出一个即可).
    【答案】见试题解答内容
    【解答】解:(1)∵CD=30,DE=50,CE=40,
    ∴CD2+CE2=302+402=502=DE2,
    ∴∠DCE=90°,
    故“办法一”依据的一个数学定理是勾股定理的逆定理;
    故答案为:勾股定理的逆定理;

    (2)由作图方法可知,QR=QC,QS=QC,
    ∴∠QCR=∠QRC,∠QCS=∠QSC,
    ∵∠SRC+∠QCS+∠QCR+∠QSC=180°,
    ∴2(∠QCR+∠QCS)=180°,
    ∴∠QCR+∠QCS=90°,
    即∠RCS=90°;

    (3)①如图③所示,直线PC即为所求;
    ②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

    45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.
    (1)填空:AO的长为 4 ,AB的长为 2 ;
    (2)当t=1时,求点N的坐标;
    (3)请直接写出MN的长为  (用含t的代数式表示);
    (4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为 16 .

    【答案】见试题解答内容
    【解答】解:(1)∵A(4,4),B(6,0),
    ∴OA==4,AB==2.
    故答案为4,2.

    (2)设直线AB的解析式为y=kx+b,将A(4,4),B(6,0)代入得到,,
    解得,
    ∴直线AB的解析式为y=﹣2x+12,
    由题意点N的纵坐标为1,
    令y=1,则1=﹣2x+12,
    ∴x=,
    ∴N(,1).

    (3)当0<t<4时,令y=t,代入y=﹣2x+12,得到x=,
    ∴N(,t),
    ∵∠AOB=∠AOP=45°,∠OPM=90°,
    ∴OP=PM=t,
    ∴MN=PN﹣PM=﹣t=.
    故答案为.

    (4).如图,当t=时,MN==4,设EM=m,则EN=4﹣m.

    由题意S1•S2=•m×4×(4﹣m)×4=﹣4m2+16m=﹣4(m﹣2)2+16,
    ∵﹣4<0,
    ∴m=2时,S1•S2有最大值,最大值为16.
    故答案为16.
    46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:
    (a+b)2=a2+2ab+b2.
    把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.

    (1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式: x2+5x+6=(x+3)(x+2) .
    (2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;
    (3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON=CH.
    【答案】见试题解答内容
    【解答】解:(1)如图(2),大正方形的面积为一个正方形的面积与三个小长方形面积之和,
    即x2+5x+6,
    同时大长方形的面积也可以为(x+3)(x+2),
    所以x2+5x+6=(x+3)(x+2);
    故答案为:x2+5x+6=(x+3)(x+2);
    (2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,
    ∴AB==5,
    ∵S△ABC=AC•BC=AB•CH,
    ∴CH===;
    答:CH的长为;
    (3)证明:如图(4),
    ∵OM⊥AB,ON⊥AC,CH⊥AB,垂足分别为点M,N,H,
    ∴S△ABC=S△ABO+S△AOC,
    ∴AB•CH=AB•OM+AC•ON,
    ∵AB=AC,
    ∴CH=OM+ON.
    即OM+ON=CH.
    47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.
    (2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.

    【答案】见试题解答内容
    【解答】(1)证明:在△ACE和△BCE中,
    ∵,
    ∴△ACE≌△BCE(SAS);
    (2)AE=BE.
    理由如下:
    在CE上截取CF=DE,

    在△ADE和△BCF中,
    ∵,
    ∴△ADE≌△BCF(SAS),
    ∴AE=BF,∠AED=∠CFB,
    ∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    ∴AE=BE.
    48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).
    (1)AP的长为 2x cm(用含x的代数式表示).
    (2)当点D落在边BC上时,求x的值.
    (3)求y关于x的函数解析式,并写出自变量x的取值范围.

    【答案】见试题解答内容
    【解答】解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,
    ∴AP的长为2xcm;
    故答案为:2x;
    (2)当点D落在BC上时,如图1,
    BP=AB﹣AP=4﹣2x,

    ∵PQ⊥AB,
    ∴∠QPA=90°,
    ∵△PQD等边三角形,△ABC是等边三角形,
    ∴∠A=∠B=∠DPQ=60°,PQ=PD,
    ∴∠BPD=30°,
    ∴∠PDB=90°,
    ∴PD⊥BC,
    ∴△APQ≌△BDP(AAS),
    ∴BD=AP=2x,
    ∵BP=2BD,
    ∴4﹣2x=4x,
    解得x=;
    (3)①如图2,当0<x≤时,

    ∵在Rt△APQ中,AP=2x,∠A=60°,
    ∴PQ=AP•tan60°=2x,
    ∵△PQD等边三角形,
    ∴S△PQD=2x•3x=3x2cm2,
    所以y=3x2;
    ②如图3,当点Q与点C重合时,

    此时CP⊥AB,
    所以AP=AB,即2x═2,
    解得x=1,
    所以当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,

    ∵AP=2x,
    ∴BP=4﹣2x,AQ=2AP=4x,
    ∴BG=BP=2﹣x
    ∴PG=BG=(2﹣x),
    ∴S△PBG=BG•PG=(2﹣x)2,
    ∵AQ=2AP=4x,
    ∴CQ=AC﹣AQ=4﹣4x,
    ∴QH=CQ=(4﹣4x),
    ∴S△QCH=CQ•QH=(4﹣4x)2,
    ∵S△ABC=4×2=4,
    ∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH﹣S△APQ
    =4﹣(2﹣x)2﹣(4﹣4x)2﹣×2x×2x
    =﹣x2+18x﹣6,
    所以y=﹣x2+18x﹣6;
    ③如图5,当1<x<2时,点Q运动在BC边上,
    设PD与BC相交于点G,

    此时PG=BP•sin60°=(4﹣2x)×=(2﹣x),
    ∵PB=4﹣2x,
    ∴BQ=2BP=2(4﹣2x)=4(2﹣x),
    ∴BG=BP=2﹣x,
    ∴QG=BQ﹣BG=3(2﹣x),
    ∴重叠部分的面积为:
    S△PQG=PG•QG=(2﹣x)•3(2﹣x)=(2﹣x)2.
    所以y=(2﹣x)2.
    综上所述:y关于x的函数解析式为:
    当0<x≤时,y=3x2;
    当<x≤1时,y=﹣x2+18x﹣6;
    当1<x<2时,y=(2﹣x)2.
    49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.
    (1)①请叙述勾股定理;
    ②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)

    (2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 3 个;



    ②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;
    (3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)
    ①a2+b2+c2+d2= m2 ;
    ②b与c的关系为 b=c ,a与d的关系为 a+d=m .

    【答案】见试题解答内容
    【解答】解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.
    (或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)
    ②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.
    即c2=ab×4+(b﹣a)2,
    化简得:a2+b2=c2.
    在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.
    即(a+b)2=c2+ab×4,
    化简得:a2+b2=c2.
    在图3中,梯形的面积等于三个直角三角形的面积的和.
    即(a+b)(a+b)=ab×2+c2,
    化简得:a2+b2=c2.
    (2)①三个图形中面积关系满足S1+S2=S3的有3个;
    故答案为3;
    ②结论:S1+S2=S3.
    ∵S1+S2=()2+()2+S3﹣()2,
    ∴S1+S2=π(a2+b2﹣c2)+S3,
    ∴a2+b2=c2.
    ∴S1+S2=S3.
    (3)①a2+b2+c2+d2=m2;
    ②b与c的关系为b=c,a与d的关系为a+d=m.
    故答案为:m2;b=c,a+d=m.
    50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
    【问题解决】
    如图1,若点D在边BC上,求证:CE+CF=CD;
    【类比探究】
    如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

    【答案】见试题解答内容
    【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:
    ∵△ABC是等边三角形,
    ∴∠ECH=60°,
    ∴△CEH是等边三角形,
    ∴EH=EC=CH,∠CEH=60°,
    ∵△DEF是等边三角形,
    ∴DE=FE,∠DEF=60°,
    ∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
    ∴∠DEH=∠FEC,
    在△DEH和△FEC中,

    ∴△DEH≌△FEC(SAS),
    ∴DH=CF,
    ∴CD=CH+DH=CE+CF,
    ∴CE+CF=CD;
    【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
    ∵△ABC是等边三角形,
    ∴∠A=∠B=60°,
    过D作DG∥AB,交AC的延长线于点G,如图2所示:
    ∵GD∥AB,
    ∴∠GDC=∠B=60°,∠DGC=∠A=60°,
    ∴∠GDC=∠DGC=60°,
    ∴△GCD为等边三角形,
    ∴DG=CD=CG,∠GDC=60°,
    ∵△EDF为等边三角形,
    ∴ED=DF,∠EDF=∠GDC=60°,
    ∴∠EDG=∠FDC,
    在△EGD和△FCD中,

    ∴△EGD≌△FCD(SAS),
    ∴EG=FC,
    ∴FC=EG=CG+CE=CD+CE.

    相关试卷

    2020年全国中考数学试题精选分类(10)概率与统计(含解析):

    这是一份2020年全国中考数学试题精选分类(10)概率与统计(含解析),共64页。

    2020年全国中考数学试题精选分类(4)一次函数(含解析):

    这是一份2020年全国中考数学试题精选分类(4)一次函数(含解析),共42页。

    2020年全国中考数学试题精选分类(9)圆(含解析):

    这是一份2020年全国中考数学试题精选分类(9)圆(含解析),共53页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map