搜索
    上传资料 赚现金
    英语朗读宝

    2022届黑龙江省安达市四平中学中考数学模拟试题含解析

    2022届黑龙江省安达市四平中学中考数学模拟试题含解析第1页
    2022届黑龙江省安达市四平中学中考数学模拟试题含解析第2页
    2022届黑龙江省安达市四平中学中考数学模拟试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届黑龙江省安达市四平中学中考数学模拟试题含解析

    展开

    这是一份2022届黑龙江省安达市四平中学中考数学模拟试题含解析,共20页。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。
    一、选择题(共10小题,每小题3分,共30分)
    1.﹣的绝对值是( )
    A.﹣B.﹣C.D.
    2.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有( )
    A.1个 B.2个 C.3个 D.4个
    3.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为
    A.B.
    C.D.
    4.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )
    A.B.C.D.
    5.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
    A.B.C.D.
    6.将某不等式组的解集表示在数轴上,下列表示正确的是( )
    A.B.
    C.D.
    7.在,,,这四个数中,比小的数有( )个.
    A.B.C.D.
    8.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为( )
    A.6B.8C.14D.16
    9.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )
    A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°
    C.∠1=30°,∠1=60°D.∠1=∠1=45°
    10.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第( )象限.
    A.一B.二C.三D.四
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.
    12.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.
    13.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为
    14.在直角三角形ABC中,∠C=90°,已知sinA=,则csB=_______.
    15.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.
    16.计算:(a2)2=_____.
    三、解答题(共8题,共72分)
    17.(8分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)
    (1)求a、b的值;
    (2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;
    (3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.
    18.(8分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
    (1)求证:∠G=∠CEF;
    (2)求证:EG是⊙O的切线;
    (3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值.
    19.(8分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
    (1)求一件A型、B型丝绸的进价分别为多少元?
    (2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
    ①求m的取值范围.
    ②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
    20.(8分) (1)解方程组
    (2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
    21.(8分)先化简,再求值:(1﹣)÷,其中x=1.
    22.(10分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.
    (1)求此抛物线所对应的函数表达式.
    (2)求PF的长度,用含m的代数式表示.
    (3)当四边形PEDF为平行四边形时,求m的值.
    23.(12分)已知二次函数.
    (1)该二次函数图象的对称轴是;
    (2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;
    (3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.
    24.如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
    (1)求二次函数的解析式和该二次函数图象的顶点的坐标.
    (2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据负数的绝对值是它的相反数,可得答案.
    【详解】
    │-│=,A错误;
    │-│=,B错误;││=,D错误;
    ││=,故选C.
    【点睛】
    本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
    2、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    3、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    4、B
    【解析】
    解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.
    5、C
    【解析】
    根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
    【详解】
    解:由二次函数的图像可知a0,c0,
    ∴正比例函数过二四象限,反比例函数过一三象限.
    故选C.
    【点睛】
    本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
    6、B
    【解析】
    分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“”表示,大于向右小于向左.
    点睛:不等式组的解集为−1⩽x,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“”要用空心圆点表示.
    7、B
    【解析】
    比较这些负数的绝对值,绝对值大的反而小.
    【详解】
    在﹣4、﹣、﹣1、﹣这四个数中,比﹣2小的数是是﹣4和﹣.故选B.
    【点睛】
    本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.
    8、C
    【解析】
    根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.
    【详解】
    ∵一元二次方程x2-2x-5=0的两根是x1、x2,
    ∴x1+x2=2,x1•x2=-5,
    ∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.
    故选C.
    【点睛】
    考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1•x2= .
    9、D
    【解析】
    能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.
    【详解】
    “如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.
    故选:D.
    【点睛】
    考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.
    10、B
    【解析】
    根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
    【详解】
    ∵反比例函数y=的图象在一、三象限,
    ∴k>0,
    ∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
    故选:B.
    【点睛】
    考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    如图作DH⊥AE于H,连接CG.设DG=x,
    ∵∠DCE=∠DEC,
    ∴DC=DE,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=90°,
    ∴DA=DE,
    ∵DH⊥AE,
    ∴AH=HE=DG,
    在△GDC与△GDE中,

    ∴△GDC≌△GDE(SAS),
    ∴GC=GE,∠DEG=∠DCG=∠DAF,
    ∵∠AFD=∠CFG,
    ∴∠ADF=∠CGF=90°,
    ∴2∠GDE+2∠DEG=90°,
    ∴∠GDE+∠DEG=45°,
    ∴∠DGH=45°,
    在Rt△ADH中,AD=8,AH=x,DH=x,
    ∴82=x2+(x)2,
    解得:x=,
    ∵△ADH∽△AFD,
    ∴,
    ∴AF==4.
    故答案为4.
    12、210°
    【解析】
    根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.
    【详解】
    解:如图:
    ∵∠C=∠F=90°,∠A=45°,∠D=30°,
    ∴∠B=45°,∠E=60°,
    ∴∠2+∠3=120°,
    ∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,
    故答案为:210°.
    【点睛】
    本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
    13、
    【解析】
    因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.
    14、.
    【解析】
    试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=csα,cs(90°-α)=sinα.
    试题解析:∵在△ABC中,∠C=90°,
    ∴∠A+∠B=90°,
    ∴csB=sinA=.
    考点:互余两角三角函数的关系.
    15、1.
    【解析】
    首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.
    【详解】
    解:∵弦AC与半径OB互相平分,
    ∴OA=AB,
    ∵OA=OC,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴∠AOC=1°,
    故答案为1.
    【点睛】
    本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.
    16、a1.
    【解析】
    根据幂的乘方法则进行计算即可.
    【详解】

    故答案为
    【点睛】
    考查幂的乘方,掌握运算法则是解题的关键.
    三、解答题(共8题,共72分)
    17、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    【解析】
    试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.
    试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点, ∴C(0,1),
    ∵点C在直线l2上, ∴b=1, ∴直线l2的解析式为y=ax+1, ∵点B在直线l2上,
    ∴2a+1=0, ∴a=﹣;
    (2)、解:由(1)知,l1的解析式为y=x+1,令y=0, ∴x=﹣1,
    由图象知,点Q在点A,B之间, ∴﹣1<n<2
    (3)、解:如图,
    ∵△PAC是等腰三角形, ∴①点x轴正半轴上时,当AC=P1C时,
    ∵CO⊥x轴, ∴OP1=OA=1, ∴BP1=OB﹣OP1=2﹣1=1, ∴1÷1=1s,
    ②当P2A=P2C时,易知点P2与O重合, ∴BP2=OB=2, ∴2÷1=2s,
    ③点P在x轴负半轴时,AP3=AC, ∵A(﹣1,0),C(0,1), ∴AC=, ∴AP3=,
    ∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,
    ∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣ )s,
    即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.
    18、(1)证明见解析;(2)证明见解析;(3).
    【解析】
    试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
    (2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
    (3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;
    试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.
    (2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.
    (3)解:如图3中,连接OC.设⊙O的半径为r.
    在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.
    点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.
    19、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.
    【解析】
    (1)根据题意应用分式方程即可;
    (2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.
    【详解】
    (1)设型丝绸的进价为元,则型丝绸的进价为元,
    根据题意得:,
    解得,
    经检验,为原方程的解,

    答:一件型、型丝绸的进价分别为500元,400元.
    (2)①根据题意得:

    的取值范围为:,
    ②设销售这批丝绸的利润为,
    根据题意得:


    (Ⅰ)当时,,
    时,
    销售这批丝绸的最大利润;
    (Ⅱ)当时,,
    销售这批丝绸的最大利润;
    (Ⅲ)当时,
    当时,
    销售这批丝绸的最大利润.
    综上所述:.
    【点睛】
    本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.
    20、(1);(2)当坐标为时,取得最小值为.
    【解析】
    (1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
    【详解】
    解:(1)
    ①②得:
    解得:
    把代入②得,
    则方程组的解为
    (2 )由题意得:,
    当坐标为时,取得最小值为.
    【点睛】
    此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
    21、.
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
    【详解】
    原式==
    当x=1时,原式=.
    【点睛】
    本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
    22、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;
    (1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.
    【详解】
    解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,
    ∴,解得,
    此抛物线所对应的函数表达式y=-x2+2x+1;
    (2)∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴C(0,1).
    设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得
    ,解得,
    即BC的函数解析式为y=-x+1.
    由P在BC上,F在抛物线上,得
    P(m,-m+1),F(m,-m2+2m+1).
    PF=-m2+2m+1-(-m+1)=-m2+1m.
    (1)如图

    ∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴D(1,4).
    ∵线段BC与抛物线的对称轴交于点E,
    当x=1时,y=-x+1=2,
    ∴E(1,2),
    ∴DE=4-2=2.
    由四边形PEDF为平行四边形,得
    PF=DE,即-m2+1m=2,
    解得m1=1,m2=2.
    当m=1时,线段PF与DE重合,m=1(不符合题意,舍).
    当m=2时,四边形PEDF为平行四边形.
    考点:二次函数综合题.
    23、 (1)x=1;(2),;(3)
    【解析】
    (1)二次函数的对称轴为直线x=-,带入即可求出对称轴,
    (2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.
    (3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.
    【详解】
    (1)该二次函数图象的对称轴是直线;
    (2)∵该二次函数的图象开口向上,对称轴为直线,,
    ∴当时,的值最大,即.
    把代入,解得.
    ∴该二次函数的表达式为.
    当时,,
    ∴.
    (3)易知a0,
    ∵当时,均有,
    ∴,解得
    ∴的取值范围.
    【点睛】
    本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.
    24、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
    【解析】
    (1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
    【详解】
    (1)由题意得:x1+x2=3,x1x2=﹣2m,
    x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
    解得:m=2,
    抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
    顶点坐标为(,);
    (2)存在,理由:
    将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
    ∴点A、B的坐标为(0,2)、(,),
    一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
    ∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
    ∴PB==,
    AP==2
    过点B作BM⊥AB交x轴于点M,
    ∵∠MBP=∠AOP=90°,∠MPB=∠APO,
    ∴△APO∽△MPB,
    ∴ ,∴ ,
    ∴MP=,
    ∴OM=OP﹣MP=6﹣=,
    ∴点M(,0).
    【点睛】
    本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.

    相关试卷

    黑龙江省安达市四平中学2023-2024学年九上数学期末达标检测模拟试题含答案:

    这是一份黑龙江省安达市四平中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知,如图,已知点E,二次函数y=等内容,欢迎下载使用。

    黑龙江省安达市四平中学2022-2023学年七下数学期末监测试题含答案:

    这是一份黑龙江省安达市四平中学2022-2023学年七下数学期末监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下面各式计算正确的是,下列根式中是最简根式的是,下列分解因式正确的是,对于一组数据等内容,欢迎下载使用。

    吉林省四平市伊通县重点中学2022年中考数学模拟试题含解析:

    这是一份吉林省四平市伊通县重点中学2022年中考数学模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么,tan60°的值是,计算的结果是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map