终身会员
搜索
    上传资料 赚现金

    2022届黑龙江省大庆市肇源县第四中学中考猜题数学试卷含解析

    立即下载
    加入资料篮
    2022届黑龙江省大庆市肇源县第四中学中考猜题数学试卷含解析第1页
    2022届黑龙江省大庆市肇源县第四中学中考猜题数学试卷含解析第2页
    2022届黑龙江省大庆市肇源县第四中学中考猜题数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届黑龙江省大庆市肇源县第四中学中考猜题数学试卷含解析

    展开

    这是一份2022届黑龙江省大庆市肇源县第四中学中考猜题数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )

    A. B. C. D.
    2.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )

    A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
    3.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是(  )

    A.x>﹣4 B.x>0 C.x<﹣4 D.x<0
    4.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是(  )

    A.10π B.15π C.20π D.30π
    5.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为(  )

    A. B. C.10 D.
    6.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )

    A.12 B.16 C.18 D.24
    7.已知反比例函数y=﹣,当1<x<3时,y的取值范围是(  )
    A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣2
    8.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )

    A.1 B.2 C.3 D.4
    9.下列运算正确的是( )
    A. B. C. D.
    10.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
    A.3或6 B.1或6 C.1或3 D.4或6
    二、填空题(共7小题,每小题3分,满分21分)
    11.在函数y=中,自变量x的取值范围是_____.
    12.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.

    13.阅读以下作图过程:
    第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);
    第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);
    第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.
    请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为______.

    14.写出一个比大且比小的有理数:______.
    15.已知函数是关于的二次函数,则__________.
    16.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.

    17.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
    (1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
    (2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
    19.(5分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).

    20.(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
    态度
    非常喜欢
    喜欢
    一般
    不知道
    频数
    90
    b
    30
    10
    频率
    a
    0.35
    0.20

    请你根据统计图、表,提供的信息解答下列问题:
    (1)该校这次随即抽取了 名学生参加问卷调查:
    (2)确定统计表中a、b的值:a= ,b= ;
    (3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
    21.(10分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
    求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
    22.(10分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).

    23.(12分)先化简,再求值:(x﹣2﹣)÷,其中x=.
    24.(14分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
    (1)求证:四边形AGDH为菱形;
    (2)若EF=y,求y关于x的函数关系式;
    (3)连结OF,CG.
    ①若△AOF为等腰三角形,求⊙O的面积;
    ②若BC=3,则CG+9=______.(直接写出答案).




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.
    【详解】
    解:∵一次函数y=kx+b的图象可知k>1,b<1,
    ∴-b>1,
    ∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,
    故选:A.
    【点睛】
    本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
    2、B
    【解析】
    试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
    试题解析:AC=2,
    则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
    则OC′=3,
    故C′的坐标是(3,0).
    故选B.
    考点:坐标与图形变化-旋转.
    3、A
    【解析】
    试题分析:充分利用图形,直接从图上得出x的取值范围.
    由图可知,当y<1时,x<-4,故选C.
    考点:本题考查的是一次函数的图象
    点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.
    4、B
    【解析】
    由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
    ∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
    ∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
    ∴圆锥的侧面积=lr=×6π×5=15π,故选B
    5、D
    【解析】
    如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.
    【详解】
    如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,

    则∠1=∠2,
    ∵=2,
    ∴△APD∽△ABP′,
    ∴BP′=2PD,
    ∴2PD+PB=BP′+PB≥PP′,
    ∴PP′=,
    ∴2PD+PB≥4,
    ∴2PD+PB的最小值为4,
    故选D.
    【点睛】
    本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
    6、A
    【解析】
    解:∵四边形ABCD为矩形,
    ∴AD=BC=10,AB=CD=8,
    ∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
    ∴AF=AD=10,EF=DE,
    在Rt△ABF中,
    ∵BF==6,
    ∴CF=BC-BF=10-6=4,
    ∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.
    故选A.
    7、D
    【解析】
    根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.
    【详解】
    解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.
    故选D.
    【点睛】
    本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.
    8、C
    【解析】
    分析:
    过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
    详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
    (2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
    (3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
    综上所述,符合要求的半径为2的圆共有3个.
    故选C.

    点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
    9、D
    【解析】
    根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.
    【详解】
    解:A、B两项不是同类项,所以不能合并,故A、B错误,
    C、D考查幂的乘方运算,底数不变,指数相乘. ,故D正确;
    【点睛】
    本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.
    10、B
    【解析】
    分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
    详解:如图,

    当h<2时,有-(2-h)2=-1,
    解得:h1=1,h2=3(舍去);
    当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
    当h>5时,有-(5-h)2=-1,
    解得:h3=4(舍去),h4=1.
    综上所述:h的值为1或1.
    故选B.
    点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x≥4
    【解析】
    试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
    由题意得,.
    考点:二次根式有意义的条件
    点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
    12、
    【解析】
    过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
    【详解】
    如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
    ∵∠CAD+∠ACD=90°,
    ∠BCE+∠ACD=90°,
    ∴∠CAD=∠BCE,
    在等腰直角△ABC中,AC=BC,
    在△ACD和△CBE中,

    ∴△ACD≌△CBE(AAS),
    ∴CD=BE=1,
    ∴AD=2,
    ∴AC=,
    ∴AB=AC=,
    ∴sinα=,
    故答案为.

    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
    13、作图见解析,
    【解析】
    解:如图,点M即为所求.连接AC、BC.由题意知:AB=4,BC=1.∵AB为圆的直径,∴∠ACB=90°,则AM=AC===,∴点M表示的数为.故答案为.

    点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.
    14、2
    【解析】
    直接利用接近和的数据得出符合题意的答案.
    【详解】
    解:到之间可以为:2(答案不唯一),
    故答案为:2(答案不唯一).
    【点睛】
    此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.
    15、1
    【解析】
    根据一元二次方程的定义可得:,且,求解即可得出m的值.
    【详解】
    解:由题意得:,且,
    解得:,且,

    故答案为:1.
    【点睛】
    此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”.
    16、1
    【解析】
    根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.
    【详解】
    解:设点A的坐标为,
    过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,
    点,
    点B的坐标为,

    解得,,
    故答案为:1.
    【点睛】
    本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    17、1≤x≤1
    【解析】
    此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;
    【详解】
    解:如图:①当F、D重合时,BP的值最小;

    根据折叠的性质知:AF=PF=5;
    在Rt△PFC中,PF=5,FC=1,则PC=4;
    ∴BP=xmin=1;
    ②当E、B重合时,BP的值最大;
    由折叠的性质可得BP=AB=1.
    所以BP的取值范围是:1≤x≤1.
    故答案为:1≤x≤1.
    【点睛】
    此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
    【解析】
    (1)直接利用每件利润×销量=总利润进而得出等式求出答案;
    (2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
    【详解】
    (1)根据题意得:(x﹣20)(﹣2x+1)=150,
    解得:x1=25,x2=35,
    答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
    (2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
    ∵a=﹣2,
    ∴抛物线开口向下,当x<30时,y随x的增大而增大,
    又由于这种农产品的销售价不高于每千克28元
    ∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
    ∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
    【点睛】
    此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
    19、大型标牌上端与下端之间的距离约为3.5m.
    【解析】
    试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.
    试题解析:
    设AB,CD 的延长线相交于点E,
    ∵∠CBE=45°,
    CE⊥AE,
    ∴CE=BE,
    ∵CE=16.65﹣1.65=15,
    ∴BE=15,
    而AE=AB+BE=1.
    ∵∠DAE=30°,
    ∴DE==11.54,
    ∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),
    答:大型标牌上端与下端之间的距离约为3.5m.

    20、(1)200,;(2)a=0.45,b=70;(3)900名.
    【解析】
    (1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
    【详解】
    解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
    (2)“非常喜欢”频数90,a= ;
    (3).
    故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
    【点睛】
    此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
    21、解:(1)该校班级个数为4÷20%=20(个),
    只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
    该校平均每班留守儿童的人数为:
    =4(名),
    补图如下:

    (2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,

    有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
    则所选两名留守儿童来自同一个班级的概率为:=.
    【解析】
    (1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
    (2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.
    22、CE的长为(4+)米
    【解析】
    由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
    【详解】
    过点A作AH⊥CD,垂足为H,

    由题意可知四边形ABDH为矩形,∠CAH=30°,
    ∴AB=DH=1.5,BD=AH=6,
    在Rt△ACH中,tan∠CAH=,
    ∴CH=AH•tan∠CAH,
    ∴CH=AH•tan∠CAH=6tan30°=6×=2(米),
    ∵DH=1.5,
    ∴CD=2+1.5,
    在Rt△CDE中,
    ∵∠CED=60°,sin∠CED=,
    ∴CE==(4+)(米),
    答:拉线CE的长为(4+)米.
    考点:解直角三角形的应用-仰角俯角问题
    23、
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式,


    当时,原式
    【点睛】
    本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.
    24、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
    【解析】
    (1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
    (2)只要证明△AEF∽△ACB,可得解决问题;
    (3)①分三种情形分别求解即可解决问题;
    ②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;
    【详解】
    (1)证明:∵GH垂直平分线段AD,
    ∴HA=HD,GA=GD,
    ∵AB是直径,AB⊥GH,
    ∴EG=EH,
    ∴DG=DH,
    ∴AG=DG=DH=AH,
    ∴四边形AGDH是菱形.
    (2)解:∵AB是直径,
    ∴∠ACB=90°,
    ∵AE⊥EF,
    ∴∠AEF=∠ACB=90°,
    ∵∠EAF=∠CAB,
    ∴△AEF∽△ACB,
    ∴,
    ∴,
    ∴y=x2(x>0).
    (3)①解:如图1中,连接DF.

    ∵GH垂直平分线段AD,
    ∴FA=FD,
    ∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,
    ∴AB=,
    ∴⊙O的面积为π.
    如图2中,当AF=AO时,

    ∵AB==,
    ∴OA=,
    ∵AF==,
    ∴=,
    解得x=4(负根已经舍弃),
    ∴AB=,
    ∴⊙O的面积为8π.
    如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,

    ∵△ACE∽△ABC,
    ∴AC2=AE•AB,
    ∴16=x•,
    解得x2=2﹣2(负根已经舍弃),
    ∴AB2=16+4x2=8+8,
    ∴⊙O的面积=π••AB2=(2+2)π
    综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;
    ②如图3中,连接CG.

    ∵AC=4,BC=3,∠ACB=90°,
    ∴AB=5,
    ∴OH=OA=,
    ∴AE=,
    ∴OE=OA﹣AE=1,
    ∴EG=EH==,
    ∵EF=x2=,
    ∴FG=﹣,AF==,AH==,
    ∵∠CFG=∠AFH,∠FCG=∠AHF,
    ∴△CFG∽△HFA,
    ∴,
    ∴,
    ∴CG=﹣,
    ∴CG+9=4.
    故答案为4.
    【点睛】
    本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.

    相关试卷

    2024年黑龙江省大庆市肇源县中考数学二模试卷(含解析):

    这是一份2024年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析):

    这是一份2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析):

    这是一份2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map