2022届河南省郑州枫杨外国语中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是( )
A. B. C. D.
2.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是( )
A.且 B. C.且 D.
3.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为( )
A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
4.一元二次方程的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
5.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )
A. B. C. D.
6.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
A.(,0) B.(2,0) C.(,0) D.(3,0)
7.下列运算结果正确的是( )
A.3a﹣a=2 B.(a﹣b)2=a2﹣b2
C.a(a+b)=a2+b D.6ab2÷2ab=3b
8.下面的图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
9.若关于x的不等式组恰有3个整数解,则字母a的取值范围是( )
A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1
10.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
其中正确的结论个数为( )
A.4 B.3 C.2 D.1
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数y=(k≠0)的图象恰好经过点B'、M,则k=_____.
12.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.
13.化简二次根式的正确结果是_____.
14.我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_____m.
15.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为
16.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
17.分解因式:2a4﹣4a2+2=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
19.(5分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
20.(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
21.(10分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.
等级
得分x(分)
频数(人)
A
95<x≤100
4
B
90<x≤95
m
C
85<x≤90
n
D
80<x≤85
24
E
75<x≤80
8
F
70<x≤75
4
请你根据图表中的信息完成下列问题:
(1)本次抽样调查的样本容量是 .其中m= ,n= .
(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
22.(10分)先化简,再求值:
÷(a﹣),其中a=3tan30°+1,b=cos45°.
23.(12分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD= (用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.
24.(14分)阅读下列材料:
材料一:
早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.
材料二:
以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.
年度
2013
2014
2015
2016
2017
参观人数(人次)
7 450 000
7 630 000
7 290 000
7 550 000
8 060 000
年增长率(%)
38.7
2.4
-4.5
3.6
6.8
他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.
根据以上信息解决下列问题:
(1)补全以下两个统计图;
(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.
考点:由实际问题抽象出分式方程
2、A
【解析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
【详解】
∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
故选B.
【点睛】
本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
3、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000637的小数点向右移动6位得到6.37
所以0.00000637用科学记数法表示为6.37×10﹣6,
故选B.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、D
【解析】
试题分析:△=22-4×4=-12<0,故没有实数根;
故选D.
考点:根的判别式.
5、C.
【解析】
试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,
∵OB=5,OD=3,∴根据勾股定理得BD=4.
∵∠A=∠BOC,∴∠A=∠BOD.
∴tanA=tan∠BOD=.
故选D.
考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.
6、C
【解析】
过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
【详解】
解:过点B作BD⊥x轴于点D,
∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO与△BCD中,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴设反比例函数的解析式为y=,
将B(3,1)代入y=,
∴k=3,
∴y=,
∴把y=2代入y=,
∴x=,
当顶点A恰好落在该双曲线上时,
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故选:C.
【点睛】
本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.
7、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=2a,不符合题意;
B、原式=a2-2ab+b2,不符合题意;
C、原式=a2+ab,不符合题意;
D、原式=3b,符合题意;
故选D
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
8、B
【解析】试题解析:A. 是轴对称图形但不是中心对称图形
B.既是轴对称图形又是中心对称图形;
C.是中心对称图形,但不是轴对称图形;
D.是轴对称图形不是中心对称图形;
故选B.
9、B
【解析】
根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.
【详解】
解:∵x的不等式组恰有3个整数解,
∴整数解为1,0,-1,
∴-2≤a<-1.
故选B.
【点睛】
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.
10、B
【解析】
试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;
③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
综上所述,正确的结论有①③⑤,共3个,故选B.
考点:四边形综合题.
二、填空题(共7小题,每小题3分,满分21分)
11、12
【解析】
根据题意可以求得点B'的横坐标,然后根据反比例函数y=(k≠0)的图象恰好经过点B'、M,从而可以求得k的值.
【详解】
解:作B′C⊥y轴于点C,如图所示,
∵∠BAB′=90°,∠AOB=90°,AB=AB′,
∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,
∴∠ABO=∠BA′C,
∴△ABO≌△BA′C,
∴AO=B′C,
∵点A(0,6),
∴B′C=6,
设点B′的坐标为(6,),
∵点M是线段AB'的中点,点A(0,6),
∴点M的坐标为(3,),
∵反比例函数y=(k≠0)的图象恰好经过点M,
∴=,
解得,k=12,
故答案为:12.
【点睛】
本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
12、13
【解析】
试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.
设母线长为R,则:
解得:
故答案为13.
13、﹣a
【解析】
, .
.
14、1×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:10nm用科学记数法可表示为1×10-1m,
故答案为1×10-1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
15、
【解析】
试题解析:∵AH=2,HB=1,
∴AB=AH+BH=3,
∵l1∥l2∥l3,
∴
考点:平行线分线段成比例.
16、4
【解析】
根据锐角的余弦值等于邻边比对边列式求解即可.
【详解】
∵∠C=90°,AB=6,
∴,
∴BC=4.
【点睛】
本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
17、1(a+1)1(a﹣1)1.
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,
故答案为:1(a+1)1(a﹣1)1
【点睛】
本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)4.1.
【解析】
试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
考点:切线的性质.
19、(1)证明见解析;(2)3或.(3)或0<
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
【详解】
(1)证明:∵矩形ABCD,
∴AD∥BC.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴△PFA∽△ABE.
(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=3,即x=3.
情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
即
∴满足条件的x的值为3或
(3) 或
【点睛】
两组角对应相等,两三角形相似.
20、(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元
【解析】
利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;
【详解】
(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;
(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,
∵抛物线开口向下,
∴当x=11时,y有最大值1805,
答:售价定为189元,利润最大1805元;
【点睛】
本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.
21、(1)80,12,28;(2)36°;(3)140人;(4)
【解析】
(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;
(2)用E组所占的百分比乘以360°得到α的值;
(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;
(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.
【详解】
(1)24÷30%=80,
所以样本容量为80;
m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;
故答案为80,12,28;
(2)E等级对应扇形的圆心角α的度数=×360°=36°;
(3)700×=140,
所以估计体育测试成绩在A、B两个等级的人数共有140人;
(4)画树状图如下:
共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,
所以恰好抽到甲和乙的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
22、,
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值.
解:原式=,
当,
原式=.
“点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.
23、(1);(2);(3).
【解析】
(1)求出BE,BD即可解决问题.
(2)利用勾股定理,面积法求高CD即可.
(3)根据CD=3DE,构建方程即可解决问题.
【详解】
解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,
∴.
∵CD,CE是斜边AB上的高,中线,
∴∠BDC=91°,.
∴在Rt△BCD中,
(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,
故答案为:.
(3)在Rt△BCD中,,
∴,
又,
∴CD=3DE,即.
∵b=3,
∴2a=9﹣a2,即a2+2a﹣9=1.
由求根公式得(负值舍去),
即所求a的值是.
【点睛】
本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
24、(1)见解析;(2)答案不唯一,预估理由合理,支撑预估数据即可
【解析】
分析:(1)根据2015年网络售票占17.33%,2017年8月实现网络售票占比77%,2017年10月2日,首次实现全部网络售票,即可补全图1,根据2016年度中国国家博物馆参观人数及年增长率,即可补全图2;(2)根据近两年平均每年增长385000人次,即可预估2018年中国国家博物馆的参观人数.
详解:(1)补全统计图如
(2)近两年平均每年增长385000人次,预估2018年中国国家博物馆的参观人数为8445000人次.(答案不唯一,预估理由合理,支撑预估数据即可.)
点睛:本题考查了统计表、折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.
河南省郑州枫杨外国语中学2022年中考联考数学试卷含解析: 这是一份河南省郑州枫杨外国语中学2022年中考联考数学试卷含解析,共24页。试卷主要包含了已知,下列各式中,正确的是,已知二次函数y=3等内容,欢迎下载使用。
河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析: 这是一份河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了单项式2a3b的次数是等内容,欢迎下载使用。
2021-2022学年河南省郑州市郑州枫杨外国语校中考联考数学试卷含解析: 这是一份2021-2022学年河南省郑州市郑州枫杨外国语校中考联考数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-3的相反数是,函数y=中自变量x的取值范围是,学校小组名同学的身高等内容,欢迎下载使用。