![05解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编01](http://www.enxinlong.com/img-preview/2/3/13319716/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![05解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编02](http://www.enxinlong.com/img-preview/2/3/13319716/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![05解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编03](http://www.enxinlong.com/img-preview/2/3/13319716/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
05解答题提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编
展开05解答题中档题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编
20.(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.
(1)求出a的值;
(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;
(3)问轿车比货车早多少时间到达乙地?
21.(2022•丽水)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.
(1)求证:△PDE≌△CDF;
(2)若CD=4cm,EF=5cm,求BC的长.
22.(2021•丽水)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题:
抽取的学生视力情况统计表
类别 | 检查结果 | 人数 |
A | 正常 | 88 |
B | 轻度近视 | ▲ |
C | 中度近视 | 59 |
D | 重度近视 | ▲ |
(1)求所抽取的学生总人数;
(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;
(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.
23.(2021•丽水)如图,在△ABC中,AC=BC,以BC为直径的半圆O交AB于点D,过点D作半圆O的切线,交AC于点E.
(1)求证:∠ACB=2∠ADE;
(2)若DE=3,AE=,求的长.
24.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.
(1)求的度数.
(2)如图,点E在⊙O上,连接CE与⊙O交于点F,若EF=AB,求∠OCE的度数.
25.(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.
26.(2018•金华)解不等式组:
参考答案与试题解析
20.(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.
(1)求出a的值;
(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;
(3)问轿车比货车早多少时间到达乙地?
【解答】解:(1)∵货车的速度是60km/h,
∴a==1.5(h);
(2)由图象可得点(1.5,0),(3,150),
设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:
,
解得,
∴s=100t﹣150;
(3)由图象可得货车走完全程需要+0.5=6(h),
∴货车到达乙地需6h,
∵s=100t﹣150,s=330,
解得t=4.8,
∴两车相差时间为6﹣4.8=1.2(h),
∴货车还需要1.2h才能到达,
即轿车比货车早1.2h到达乙地.
21.(2022•丽水)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.
(1)求证:△PDE≌△CDF;
(2)若CD=4cm,EF=5cm,求BC的长.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠A=∠ADC=∠B=∠C=90°,AB=CD,
由折叠得:AB=PD,∠A=∠P=90°,∠B=∠PDF=90°,
∴PD=CD,
∵∠PDF=∠ADC,
∴∠PDE=∠CDF,
在△PDE和△CDF中,
,
∴△PDE≌△CDF(ASA);
(2)解:如图,过点E作EG⊥BC于G,
∴∠EGF=90°,EG=CD=4,
在Rt△EGF中,由勾股定理得:FG==3,
设CF=x,
由(1)知:PE=AE=BG=x,
∵AD∥BC,
∴∠DEF=∠BFE,
由折叠得:∠BFE=∠DFE,
∴∠DEF=∠DFE,
∴DE=DF=x+3,
在Rt△CDF中,由勾股定理得:DF2=CD2+CF2,
∴x2+42=(x+3)2,
∴x=,
∴BC=2x+3=+3=(cm).
22.(2021•丽水)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题:
抽取的学生视力情况统计表
类别 | 检查结果 | 人数 |
A | 正常 | 88 |
B | 轻度近视 | ▲ |
C | 中度近视 | 59 |
D | 重度近视 | ▲ |
(1)求所抽取的学生总人数;
(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;
(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.
【解答】解:(1)抽取的学生总人数是:88÷44%=200(人),
答:所抽取的学生总人数为200人;
(2)由扇形统计图可得,近视程度为中度和重度的总人数为:
1800×(1﹣11%﹣44%)=1800×45%=810(人).
答:在该校1800人学生中,估计近视程度为中度和重度的总人数是810人;
(3)答案不唯一,例如:该校学生近视程度为中度及以上占45%,说明该校学生近视程度较为严重,建议学校加强电子产品进校园及使用的管控.
23.(2021•丽水)如图,在△ABC中,AC=BC,以BC为直径的半圆O交AB于点D,过点D作半圆O的切线,交AC于点E.
(1)求证:∠ACB=2∠ADE;
(2)若DE=3,AE=,求的长.
【解答】(1)证明:连接OD,CD,
∵DE是⊙O的切线,
∴∠ODE=90°,
∴∠ODC+∠EDC=90°,
∵BC为⊙O直径,
∴∠BDC=90°,
∴∠ADC=90°,
∴∠ADE+∠EDC=90°,
∴∠ADE=∠ODC,
∵AC=BC,
∴∠ACB=2∠DCE=2∠OCD,
∵OD=OC,
∴∠ODC=∠OCD,
∴∠ACB=2∠ADE;
(2)解:由(1)知,∠ADE+∠EDC=90°,∠ADE=∠DCE,
∴∠AED=90°,
∵DE=3,AE=,
∴AD==2,tanA=,
∴∠A=60°,
∵AC=BC,
∴△ABC是等边三角形,
∴∠B=60°,BC=AB=2AD=4,
∴,
∴ 的长为==.
24.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.
(1)求的度数.
(2)如图,点E在⊙O上,连接CE与⊙O交于点F,若EF=AB,求∠OCE的度数.
【解答】解:(1)连接OB,
∵BC是圆的切线,∴OB⊥BC,
∵四边形OABC是平行四边形,
∴OA∥BC,∴OB⊥OA,
∴△AOB是等腰直角三角形,
∴∠ABO=45°,
∴的度数为45°;
(2)连接OE,过点O作OH⊥EC于点H,设EH=t,
∵OH⊥EC,
∴EF=2HE=2t,
∵四边形OABC是平行四边形,
∴AB=CO=EF=2t,
∵△AOB是等腰直角三角形,
∴OA=t,
则HO===t,
∵OC=2OH,
∴∠OCE=30°.
25.(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.
【解答】解:原式=2+1﹣4×+2
=2+1﹣2+2
=3.
26.(2018•金华)解不等式组:
【解答】解:解不等式+2<x,得:x>3,
解不等式2x+2≥3(x﹣1),得:x≤5,
∴不等式组的解集为3<x≤5.
浙江省温州市五年(2018-2022)中考数学真题分类汇编-06 解答题提升题: 这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-06 解答题提升题,共22页。
浙江省温州市五年(2018-2022)中考数学真题分类汇编-05 解答题中档题: 这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-05 解答题中档题,共27页。试卷主要包含了图3中画出相应的格点图形.等内容,欢迎下载使用。
01选择题容易题、中档题、提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编: 这是一份01选择题容易题、中档题、提升题-浙江省丽水市五年(2018-2022)中考数学真题分类汇编,共19页。试卷主要包含了容易题,中档题,提升题等内容,欢迎下载使用。