03填空题知识点分类-浙江省丽水市五年(2018-2022)中考数学真题分类汇编
展开03填空题知识点分类-浙江省丽水市五年(2018-2022)中考数学真题分类汇编
一.代数式
1.(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是 .
二.平方差公式
2.(2018•金华)化简(x﹣1)(x+1)的结果是 .
三.因式分解-提公因式法
3.(2022•丽水)分解因式:a2﹣2a= .
四.因式分解-运用公式法
4.(2021•丽水)分解因式:x2﹣4= .
五.因式分解的应用
5.(2019•金华)当x=1,y=﹣时,代数式x2+2xy+y2的值是 .
六.分式的化简求值
6.(2021•丽水)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:
已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.
结合他们的对话,请解答下列问题:
(1)当a=b时,a的值是 .
(2)当a≠b时,代数式的值是 .
七.二次根式有意义的条件
7.(2021•丽水)要使式子有意义,则x可取的一个数是 .
八.解一元一次不等式
8.(2022•丽水)不等式3x>2x+4的解集是 .
9.(2019•金华)不等式3x﹣6≤9的解是 .
九.点的坐标
10.(2020•金华)点P(m,2)在第二象限内,则m的值可以是(写出一个即可) .
一十.坐标与图形性质
11.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是 .
一十一.一次函数的应用
12.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是 .
一十二.全等三角形的判定
13.(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是 .
一十三.多边形内角与外角
14.(2021•丽水)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是 .
一十四.平行四边形的性质
15.(2020•金华)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是 °.
一十五.矩形的性质
16.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.
(1)若a,b是整数,则PQ的长是 ;
(2)若代数式a2﹣2ab﹣b2的值为零,则的值是 .
17.(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是 .
一十六.垂径定理的应用
18.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.
(1)图2中,弓臂两端B1,C1的距离为 cm.
(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为 cm.
一十七.旋转的性质
19.(2022•丽水)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是 cm.
20.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是 cm.
(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为 cm.
一十八.解直角三角形的应用
21.(2019•金华)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.
(1)如图3,当∠ABE=30°时,BC= cm.
(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为 cm2.
22.(2020•金华)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是 .
一十九.解直角三角形的应用-仰角俯角问题
23.(2019•金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是 .
二十.简单几何体的三视图
24.(2020•金华)如图为一个长方体,则该几何体主视图的面积为 cm2.
二十一.算术平均数
25.(2022•丽水)在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9.则这组数据的平均数是 .
二十二.中位数
26.(2021•丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是 .
27.(2020•金华)数据1,2,4,5,3的中位数是 .
28.(2019•金华)数据3,4,10,7,6的中位数是 .
二十三.众数
29.(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 .
参考答案与试题解析
一.代数式
1.(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 .
【解答】解:∵1*(﹣1)=2,
∴=2
即a﹣b=2
∴原式==(a﹣b)=﹣1
故答案为:﹣1
二.平方差公式
2.(2018•金华)化简(x﹣1)(x+1)的结果是 x2﹣1 .
【解答】解:原式=x2﹣1,
故答案为:x2﹣1
三.因式分解-提公因式法
3.(2022•丽水)分解因式:a2﹣2a= a(a﹣2) .
【解答】解:a2﹣2a=a(a﹣2).
故答案为:a(a﹣2).
四.因式分解-运用公式法
4.(2021•丽水)分解因式:x2﹣4= (x+2)(x﹣2) .
【解答】解:x2﹣4=(x+2)(x﹣2).
故答案为:(x+2)(x﹣2).
五.因式分解的应用
5.(2019•金华)当x=1,y=﹣时,代数式x2+2xy+y2的值是 .
【解答】解:当x=1,y=﹣时,
x2+2xy+y2
=(x+y)2
=(1﹣)2
=
=
故答案为:.
六.分式的化简求值
6.(2021•丽水)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:
已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.
结合他们的对话,请解答下列问题:
(1)当a=b时,a的值是 ﹣2或1 .
(2)当a≠b时,代数式的值是 7 .
【解答】解:(1)当a=b时,a2+2a=a+2,
a2+a﹣2=0,(a+2)(a﹣1)=0,
解得:a=﹣2或1,
故答案为:﹣2或1;
(2)联立方程组,
将①+②,得:a2+b2+2a+2b=b+a+4,
整理,得:a2+b2+a+b=4③,
将①﹣②,得:a2﹣b2+2a﹣2b=b﹣a,
整理,得:a2﹣b2+3a﹣3b=0,
(a+b)(a﹣b)+3(a﹣b)=0,
(a﹣b)(a+b+3)=0,
又∵a≠b,
∴a+b+3=0,即a+b=﹣3④,
将④代入③,得a2+b2﹣3=4,即a2+b2=7,
又∵(a+b)2=a2+2ab+b2=9
∴ab=1,
∴,
故答案为:7.
七.二次根式有意义的条件
7.(2021•丽水)要使式子有意义,则x可取的一个数是 4(答案不唯一) .
【解答】解:要使式子有意义,必须x﹣3≥0,
解得:x≥3,
所以x可取的一个数是4,
故答案为:4(答案不唯一).
八.解一元一次不等式
8.(2022•丽水)不等式3x>2x+4的解集是 x>4 .
【解答】解:3x>2x+4,
3x﹣2x>4,
x>4,
故答案为:x>4.
9.(2019•金华)不等式3x﹣6≤9的解是 x≤5 .
【解答】解:3x﹣6≤9,
3x≤9+6
3x≤15
x≤5,
故答案为:x≤5
九.点的坐标
10.(2020•金华)点P(m,2)在第二象限内,则m的值可以是(写出一个即可) ﹣1(答案不唯一). .
【解答】解:∵点P(m,2)在第二象限内,
∴m<0,
则m的值可以是﹣1(答案不唯一).
故答案为:﹣1(答案不唯一).
一十.坐标与图形性质
11.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是 (,﹣3) .
【解答】解:因为点A和点B关于原点对称,B点的坐标是(﹣,3),
所以A点的坐标是(,﹣3),
故答案为:(,﹣3).
一十一.一次函数的应用
12.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是 (32,4800) .
【解答】解:令150t=240(t﹣12),
解得,t=32,
则150t=150×32=4800,
∴点P的坐标为(32,4800),
故答案为:(32,4800).
一十二.全等三角形的判定
13.(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是 AC=BC(答案不唯一) .
【解答】解:添加AC=BC(答案不唯一),
∵△ABC的两条高AD,BE,
∴∠ADC=∠BEC=90°,
在△ADC和△BEC中,
∴△ADC≌△BEC(AAS),
故答案为:AC=BC(答案不唯一).
一十三.多边形内角与外角
14.(2021•丽水)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是 6或7 .
【解答】解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,
解得:n=6.
∵多边形过顶点截去一个角后边数不变或减少1,
∴原多边形的边数为6或7,
故答案为:6或7.
一十四.平行四边形的性质
15.(2020•金华)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是 30 °.
【解答】解:∵四边形ABCD是平行四边形,
∴∠D+∠C=180°,
∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,
故答案为:30.
一十五.矩形的性质
16.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.
(1)若a,b是整数,则PQ的长是 任意正整数 ;
(2)若代数式a2﹣2ab﹣b2的值为零,则的值是 3+2 .
【解答】解:(1)由图可知:PQ=a﹣b,
∵a,b是整数,a>b,
∴PQ的长是任意正整数;
故答案为:任意正整数;
(2)∵a2﹣2ab﹣b2=0,
∴a2﹣b2=2ab,(a﹣b)2=2b2,
∴a=b+b(负值舍),
∵四个矩形的面积都是5.AE=a,DE=b,
∴EP=,EN=,
则======3+2.
故答案为:3+2.
17.(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是 .
【解答】解:设七巧板的边长为x,则
AB=x+x,
BC=x+x+x=2x,
==.
故答案为:.
一十六.垂径定理的应用
18.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.
(1)图2中,弓臂两端B1,C1的距离为 30 cm.
(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为 10﹣10 cm.
【解答】解:(1)如图2中,连接B1C1交DD1于H.
∵D1A=D1B1=30
∴D1是的圆心,
∵AD1⊥B1C1,
∴B1H=C1H=30×sin60°=15,
∴B1C1=30
∴弓臂两端B1,C1的距离为30
(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.
设半圆的半径为r,则πr=,
∴r=20,
∴AG=GB2=20,GD1=30﹣20=10,
在Rt△GB2D2中,GD2==10
∴D1D2=10﹣10.
故答案为30,10﹣10,
一十七.旋转的性质
19.(2022•丽水)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是 (3﹣3) cm.
【解答】解:如图,设EF与BC交于点H,
∵O是边BC(DF)的中点,BC=12cm.如图2,
∴OD=OF=OB=OC=6cm.
∵将△ABC绕点O顺时针旋转60°,
∴∠BOD=∠FOH=60°,
∵∠F=30°,
∴∠FHO=90°,
∴OH=OF=3cm,
∴CH=OC﹣OH=3cm,FH=OH=3cm,
∵∠C=45°,
∴CH=GH=3cm,
∴FG=FH﹣GH=(3﹣3)cm.
故答案为:(3﹣3).
20.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是 16 cm.
(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为 cm.
【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,
∵OE=OF=1cm,
∴EF=2cm,
∴AB=CD=2cm,
∴此时四边形ABCD的周长为2+2+6+6=16(cm),
故答案为16.
(2)如图3中,连接EF交OC于H.
由题意CE=CF=×6=(cm),
∵OE=OF=1cm,
∴CO垂直平分线段EF,
∵OC===(cm),
∵•OE•EC=•CO•EH,
∴EH==(cm),
∴EF=2EH=(cm)
∵EF∥AB,
∴==,
∴AB=×=(cm).
故答案为.
一十八.解直角三角形的应用
21.(2019•金华)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.
(1)如图3,当∠ABE=30°时,BC= (90﹣45) cm.
(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为 2256 cm2.
【解答】解:∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.
∴EF=50+40=90cm
∵B到达E时,C恰好到达F,此时两门完全开启,
∴B、C两点的路程之比为5:4
(1)当∠ABE=30°时,在Rt△ABE中,BE=AB=25cm,
∴B运动的路程为(50﹣25)cm
∵B、C两点的路程之比为5:4
∴此时点C运动的路程为(50﹣25)×=(40﹣20)cm
∴BC=(50﹣25)+(40﹣20)=(90﹣45)cm
故答案为:(90﹣45);
(2)当A向M方向继续滑动15cm时,设此时点A运动到了点A'处,点B、C、D分别运动到了点B'、C'、D'处,连接A'D',如图:
则此时AA'=15cm
∴A'E=15+25=40cm
由勾股定理得:EB'=30cm,
∴B运动的路程为50﹣30=20cm
∴C运动的路程为16cm
∴C'F=40﹣16=24cm
由勾股定理得:D'F=32cm,
∴四边形A'B'C'D'的面积=梯形A'EFD'的面积﹣△A'EB'的面积﹣△D'FC'的面积=﹣30×40﹣24×32=2256cm2.
∴四边形ABCD的面积为2256cm2.
故答案为:2256.
22.(2020•金华)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是 .
【解答】解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a.
观察图象可知:BH=a,AH=a,
∵AT∥BC,
∴∠BAH=β,
∴tanβ===.
故答案为.
一十九.解直角三角形的应用-仰角俯角问题
23.(2019•金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是 40° .
【解答】解:过A点作AC⊥OC于C,
∵∠AOC=50°,
∴∠OAC=40°.
故此时观察楼顶的仰角度数是40°.
故答案为:40°.
二十.简单几何体的三视图
24.(2020•金华)如图为一个长方体,则该几何体主视图的面积为 20 cm2.
【解答】解:该几何体的主视图是一个长为5cm,宽为4cm的矩形,所以该几何体主视图的面积为20cm2.
故答案为:20.
二十一.算术平均数
25.(2022•丽水)在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9.则这组数据的平均数是 9 .
【解答】解:这组数据的平均数是=9.
故答案为:9.
二十二.中位数
26.(2021•丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是 18.75% .
【解答】解:把这些数从小到大排列为:16.0%,16.9%,18.7%,18.8%,20.9%,21.8%,
则中位数是=18.75%.
故答案为:18.75%.
27.(2020•金华)数据1,2,4,5,3的中位数是 3 .
【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,
则这组数据的中位数是3,
故答案为:3.
28.(2019•金华)数据3,4,10,7,6的中位数是 6 .
【解答】解:将数据重新排列为3、4、6、7、10,
∴这组数据的中位数为6,
故答案为:6.
二十三.众数
29.(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .
【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,
则这5年增长速度的众数是6.9%,
故答案为:6.9%.
江苏省镇江市5年(2018-2022)中考数学真题分类汇编-03填空题(容易题)知识点分类: 这是一份江苏省镇江市5年(2018-2022)中考数学真题分类汇编-03填空题(容易题)知识点分类,共10页。试卷主要包含了﹣5的绝对值等于 ,﹣8的绝对值是 ,的倒数等于 ,= ,27的立方根为 ,分解因式等内容,欢迎下载使用。
03填空题知识点分类-浙江台州市五年(2018-2022)中考数学真题分类汇编: 这是一份03填空题知识点分类-浙江台州市五年(2018-2022)中考数学真题分类汇编,共22页。试卷主要包含了砸“金蛋”游戏,因式分解,分解因式,计算﹣的结果是 等内容,欢迎下载使用。
广东省省卷五年(2018-2022)中考数学真题分类汇编:03填空题知识点分类: 这是一份广东省省卷五年(2018-2022)中考数学真题分类汇编:03填空题知识点分类,共18页。试卷主要包含了2020= ,分解因式,﹣1= 等内容,欢迎下载使用。