2022届湖北省襄阳市襄州区中考数学全真模拟试卷含解析
展开
这是一份2022届湖北省襄阳市襄州区中考数学全真模拟试卷含解析,共20页。试卷主要包含了计算3的结果是,已知抛物线y=ax2﹣等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )
A.点M B.点N C.点P D.点Q
2. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A.2 B. C.5 D.
3.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A.(0,) B.(0,) C.(0,2) D.(0,)
4.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是( )
A.10 B.12 C.20 D.24
5.计算(ab2)3的结果是( )
A.ab5 B.ab6 C.a3b5 D.a3b6
6.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
A.24 B.18 C.12 D.9
7.关于的方程有实数根,则整数的最大值是( )
A.6 B.7 C.8 D.9
8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c–3bn(an+b)(n≠1),其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
9.如图所示的两个四边形相似,则α的度数是( )
A.60° B.75° C.87° D.120°
10.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是( )
A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正确的有_________.(填序号)
12.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
13.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.
14.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.
15.已知抛物线y=ax2+bx+c=0(a≠0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 ________________.
16.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
求证:四边形是菱形若,,求四边形的面积
18.(8分)已知BD平分∠ABF,且交AE于点D.
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
19.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
20.(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)请添加一个条件使四边形BEDF为菱形.
21.(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,那么销售单价是多少?
22.(10分)已知:如图,在菱形中,点,,分别为,,的中点,连接,,,.
求证:;
当与满足什么关系时,四边形是正方形?请说明理由.
23.(12分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.
24.如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
求楼间距AB;
若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.
【详解】
解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等
根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5
∵OA=OM=ON=OQ≠OP
∴则点A不经过点P
故选C.
【点睛】
此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.
2、B
【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
【详解】
根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
故选B
【点睛】
本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
3、B
【解析】
解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).
∵D是OB的中点,∴D(﹣2,0).
设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为.当x=0时,y=,∴E(0,).故选B.
4、B
【解析】
过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,
观察图象可知AB=AC=5,
∴BM==3,∴BC=2BM=6,
∴S△ABC==12,
故选B.
【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.
5、D
【解析】
试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
试题解析:(ab2)3=a3•(b2)3=a3b1.
故选D.
考点:幂的乘方与积的乘方.
6、A
【解析】
【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
【详解】∵E是AC中点,
∵EF∥BC,交AB于点F,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长是4×6=24,
故选A.
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
7、C
【解析】
方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
【详解】
当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整数,即a=1.
故选C.
8、B
【解析】
①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
【详解】
①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
∴③④⑤正确.
故选B.
【点睛】
本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
9、C
【解析】
【分析】根据相似多边形性质:对应角相等.
【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫
故选C
【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.
10、B
【解析】
由已知抛物线求出对称轴,
解:抛物线:,对称轴,由判别式得出a的取值范围.
,,
∴,
①,.
②由①②得.
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、①②④
【解析】
由当ABCD的面积最大时,AB⊥BC,可判定ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.
【详解】
∵当ABCD的面积最大时,AB⊥BC,
∴ABCD是矩形,
∴∠A=∠C=90°,AC=BD,故③错误,④正确;
∴∠A+∠C=180°;故②正确;
∴AC==1,故①正确.
故答案为:①②④.
【点睛】
此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD是矩形是解此题的关键.
12、
【解析】
摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
故答案是:.
13、7秒或25秒.
【解析】
考点:勾股定理;等腰三角形的性质.
专题:动点型;分类讨论.
分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.
解答:解:如图,作AD⊥BC,交BC于点D,
∵BC=8cm,
∴BD=CD=BC=4cm,
∴AD==3,
分两种情况:当点P运动t秒后有PA⊥AC时,
∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
∴PD2+32=(PD+4)2-52∴PD=2.25,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴点P运动的时间为7秒或25秒.
点评:本题利用了等腰三角形的性质和勾股定理求解.
14、8
【解析】
如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
【详解】
解:如图,连接OC.
∵AB是⊙O切线,
∴OC⊥AB,AC=BC,
在Rt△ACO中,∵∠ACO=90°,OC=OD=2
tan∠OAB=,
∴,
∴AC=4,
∴AB=2AC=8,
故答案为8
【点睛】
本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
15、或x=-1
【解析】
由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴.
【详解】
∵点A的坐标为(-2,0),线段AB的长为8,
∴点B的坐标为(1,0)或(-10,0).
∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,
∴抛物线的对称轴为直线x==2或x==-1.
故答案为x=2或x=-1.
【点睛】
本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.
16、x<﹣2或0<x<2
【解析】
仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.
【详解】
解:如图,
结合图象可得:
①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.
综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.
故答案为x<﹣2或0<x<2.
【点睛】
本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.
三、解答题(共8题,共72分)
17、(1)见解析;(2)S四边形ADOE =.
【解析】
(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
【详解】
(1)证明:∵矩形ABCD,
∴OA=OB=OC=OD.
∵平行四边形ADOE,
∴OD∥AE,AE=OD.
∴AE=OB.
∴四边形AOBE为平行四边形.
∵OA=OB,
∴四边形AOBE为菱形.
(2)解:∵菱形AOBE,
∴∠EAB=∠BAO.
∵矩形ABCD,
∴AB∥CD.
∴∠BAC=∠ACD,∠ADC=90°.
∴∠EAB=∠BAO=∠DCA.
∵∠EAO+∠DCO=180°,
∴∠DCA=60°.
∵DC=2,
∴AD=.
∴SΔADC=.
∴S四边形ADOE =.
【点睛】
考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
18、 (1)见解析:(2)见解析.
【解析】
试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
试题解析:(1)如图所示:
(2)如图:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
考点:1.菱形的判定;2.作图—基本作图.
19、(1),;(2)P,.
【解析】
试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(1,3).
把点A(1,3)代入反比例函数y=,
得:3=k,
∴反比例函数的表达式y=,
联立两个函数关系式成方程组得:,
解得:,或,
∴点B的坐标为(3,1).
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.
∵点B、D关于x轴对称,点B的坐标为(3,1),
∴点D的坐标为(3,- 1).
设直线AD的解析式为y=mx+n,
把A,D两点代入得:,
解得:,
∴直线AD的解析式为y=-2x+1.
令y=-2x+1中y=0,则-2x+1=0,
解得:x=,
∴点P的坐标为(,0).
S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
=.
考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
20、见解析
【解析】
(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.
【详解】
(1)∵四边形ABCD是平行四边形,O是BD的中点,
∴AB∥DC,OB=OD,
∴∠OBE=∠ODF,
又∵∠BOE=∠DOF,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)EF⊥BD.
∵四边形BEDF是平行四边形,
∵EF⊥BD,
∴平行四边形BEDF是菱形.
【点睛】
本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.
21、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.
【解析】
(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;
【详解】
(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,
根据题意得,
解得k=﹣50,b=850,
所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;
(2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,
解得x1=9,x2=13(不合题意,舍去),
∵销售单价不得高于12元/桶,也不得低于7元/桶,
∴x=13不合题意,
答:若该经营部希望日均获利1350元,那么销售单价是9元.
【点睛】
本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.
22、见解析
【解析】
(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.
【详解】
(1)证明:∵四边形ABCD是菱形,
∴∠B=∠D,AB=BC=DC=AD,
∵点E,O,F分别为AB,AC,AD的中点,
∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,
在△BCE和△DCF中,,
∴△BCE≌△DCF(SAS);
(2)当AB⊥BC时,四边形AEOF是正方形,理由如下:
由(1)得:AE=OE=OF=AF,
∴四边形AEOF是菱形,
∵AB⊥BC,OE∥BC,
∴OE⊥AB,
∴∠AEO=90°,
∴四边形AEOF是正方形.
【点睛】
本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.
23、见解析
【解析】
试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.
证明:∵AB∥EF,
∴∠B=∠F.
又∵BD=CF,
∴BC=FD.
在△ABC与△EFD中,
∴△ABC≌△EFD(AAS),
∴AB=EF.
24、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【解析】
如图,作于M,于则,设想办法构建方程即可解决问题.
求出AC,AD,分两种情形解决问题即可.
【详解】
解:如图,作于M,于则,设.
在中,,
在中,,
,
,
,
的长为50m.
由可知:,
,,
,,
冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【点睛】
考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
相关试卷
这是一份2024年湖北省襄阳市襄州区中考模拟数学试题(含解析),共26页。试卷主要包含了小器一容三斛;大器一,解答题解答应写出文字说明等内容,欢迎下载使用。
这是一份2023年湖北省襄阳市襄州区中考数学模拟试卷,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖北省襄阳市襄州区中考数学模拟试卷(含解析 ),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。