2022届湖南省株洲市第十九中学中考数学对点突破模拟试卷含解析
展开这是一份2022届湖南省株洲市第十九中学中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了点A,下面运算结果为的是,下列四个式子中,正确的是,的倒数是,下列哪一个是假命题等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是( )
A.(1,2) B.(–1,2)
C.(–1,–2) D.(1,–2)
2.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定
3.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
A. B. C. D.
4.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
5.下面运算结果为的是
A. B. C. D.
6.下列四个式子中,正确的是( )
A. =±9 B.﹣ =6 C.()2=5 D.=4
7.的倒数是( )
A.﹣ B.2 C.﹣2 D.
8.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )
A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×106
9.下列哪一个是假命题( )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2)
D.抛物线y=x2﹣4x+2017对称轴为直线x=2
10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
鞋的尺码/cm
23
23.5
24
24.5
25
销售量/双
1
3
3
6
2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )
A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
11.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为
A.80° B.50° C.30° D.20°
12.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.有一个根是 0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知方程组,则x+y的值为_______.
14.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
15.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.
16.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.
18.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,△ABC与△A1B1C1是位似图形.
(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.
20.(6分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
21.(6分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)
(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;
(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;
(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.
22.(8分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
23.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
24.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
25.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.
26.(12分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).
(1)求抛物线的解析式;
(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
27.(12分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据点N(–1,–2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.
【详解】
∵将点N(–1,–2)绕点O旋转180°,
∴得到的对应点与点N关于原点中心对称,
∵点N(–1,–2),
∴得到的对应点的坐标是(1,2).
故选A.
【点睛】
本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.
2、A
【解析】
试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
解:∵⊙O的半径为3,圆心O到直线L的距离为2,
∵3>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选A.
考点:直线与圆的位置关系.
3、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
【详解】
画树状图如下:
由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
4、D
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
【详解】
∵反比例函数y=中,k=1>0,
∴此函数图象的两个分支在一、三象限,
∵x1<x2<0<x1,
∴A、B在第三象限,点C在第一象限,
∴y1<0,y2<0,y1>0,
∵在第三象限y随x的增大而减小,
∴y1>y2,
∴y2<y1<y1.
故选D.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
5、B
【解析】
根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.
【详解】
. ,此选项不符合题意;
.,此选项符合题意;
.,此选项不符合题意;
.,此选项不符合题意;
故选:.
【点睛】
本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.
6、D
【解析】
A、表示81的算术平方根;B、先算-6的平方,然后再求−的值;C、利用完全平方公式计算即可;D、=.
【详解】
A、=9,故A错误;
B、-=−=-6,故B错误;
C、()2=2+2+3=5+2,故C错误;
D、==4,故D正确.
故选D.
【点睛】
本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.
7、B
【解析】
根据乘积是1的两个数叫做互为倒数解答.
【详解】
解:∵×1=1
∴的倒数是1.
故选B.
【点睛】
本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
8、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将365000这个数用科学记数法表示为3.65×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、C
【解析】
分析:
根据每个选项所涉及的数学知识进行分析判断即可.
详解:
A选项中,“五边形的外角和为360°”是真命题,故不能选A;
B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
故选C.
点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
10、A
【解析】
【分析】根据众数和中位数的定义进行求解即可得.
【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
故选A.
【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
11、D
【解析】
试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.
考点:平行线的性质;三角形的外角的性质.
12、A
【解析】
判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.
【详解】
∵一次函数y=kx+b的图像经过第一、三、四象限
∴k>0, b<0
∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,
∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
【点睛】
根的判别式
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
方程组两方程相加即可求出x+y的值.
【详解】
,
①+②得:1(x+y)=9,
则x+y=1.
故答案为:1.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
14、1
【解析】
联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
【详解】
联立得:,
①×2+②,得:10x=20,
解得:x=2,
将x=2代入①,得:1-y=1,
解得:y=0,
则,
将x=2、y=0代入,得:,
解得:,
则mn=1,
故答案为1.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
15、①②③④
【解析】
①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN;
②由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN,
∴MP=AH=AC=BD;
③∵∠BAN+∠QAD=∠NAQ=45°,
∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ;
④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴.
故答案为:①②③④
点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.
16、
【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
【详解】
解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=OB=1
则边BC扫过区域的面积为:
故答案为.
【点睛】
考核知识点:扇形面积计算.熟记公式是关键.
17、1.738×1
【解析】
解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.
18、15
【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
详解:∵
当y=127时, 解得:x=43;
当y=43时,解得:x=15;
当y=15时, 解得 不符合条件.
则输入的最小正整数是15.
故答案为15.
点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
【解析】
分析:(1)直接利用已知点位置得出B点坐标即可;
(2)直接利用位似图形的性质得出对应点位置进而得出答案;
(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
故答案为(﹣2,﹣5);
(2)如图所示:△AB2C2,即为所求;
(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
故答案为6+4.
点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
20、(1)两次下降的百分率为10%;
(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.
【解析】
(1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
【详解】
解:(1)设每次降价的百分率为 x.
40×(1﹣x)2=32.4
x=10%或 190%(190%不符合题意,舍去)
答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,
由题意,得
解得:=1.1,=2.1,
∵有利于减少库存,∴y=2.1.
答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
21、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.
【解析】
(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;
(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;
(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.
【详解】
(2)在图2中,连接B′M,则∠B′MA=90°.
在Rt△ABC中,AB=4,BC=3,
∴AC=2.
∵∠B=∠B′MA=90°,∠BCA=∠MAB′,
∴△ABC∽△AMB′,
∴=,即=,
∴AM=;
(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,
∵半圆与直线CD相切,
∴ON⊥DN,
∴四边形DGON为矩形,
∴DG=ON=2,
∴AG=AD-DG=2.
在Rt△AGO中,∠AGO=90°,AO=2,AG=2,
∴∠AOG=30°,∠OAG=60°.
又∵OA=OP,
∴△AOP为等边三角形,
∴==π.
(3)由(2)可知:△AOP为等边三角形,
∴DN=GO=OA=,
∴CN=CD+DN=4+.
当点B′在直线CD上时,如图4所示,
在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,
∴B′D==,
∴CB′=4-.
∵AB′为直径,
∴∠ADB′=90°,
∴当点B′在点D右边时,半圆交直线CD于点D、B′.
∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.
【点睛】
本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.
22、(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a(万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.
【解析】
(1)根据题意直接得出y1与y2与x的函数关系式即可;
(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;
(3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.
【详解】
解:(1)由题意得:
y1=(120﹣a)x(1≤x≤125,x为正整数),
y2=100x﹣0.5x2(1≤x≤120,x为正整数);
(2)①∵40<a<100,∴120﹣a>0,
即y1随x的增大而增大,
∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)
②y2=﹣0.5(x﹣100)2+10,
∵a=﹣0.5<0,
∴x=100时,y2最大值=10(万元);
(3)∵由110﹣125a>10,
∴a<80,
∴当40<a<80时,选择方案一;
由110﹣125a=10,得a=80,
∴当a=80时,选择方案一或方案二均可;
由110﹣125a<10,得a>80,
∴当80<a<100时,选择方案二.
考点:二次函数的应用.
23、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
【解析】
(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
【详解】
解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
故答案为: 1000﹣x,﹣10x2+1300x﹣1.
(2)﹣10x2+1300x﹣1=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,
解得:44≤x≤46 .
w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
24、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇.
【解析】
试题分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;
(2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;
(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;
(4)结合(3)中函数图象求得时s的值,做差即可求解;
(5)求出函数图象的交点坐标即可求解.
试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;
(2)(330﹣240)÷60=1.5(千米/分);
(3)设L1为 把点(0,330),(60,240)代入得
所以
设L2为 把点(60,60)代入得
所以
(4)当时,
330﹣150﹣120=60(千米);
所以2小时后,两车相距60千米;
(5)当时,
解得
即行驶132分钟,A、B两车相遇.
25、 (1)200;(2)见解析;(3)126°;(4)240人.
【解析】
(1)根据文史类的人数以及文史类所占的百分比即可求出总人数
(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;
(3)根据小说类的百分比即可求出圆心角的度数;
(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数
【详解】
(1)∵喜欢文史类的人数为76人,占总人数的38%,
∴此次调查的总人数为:76÷38%=200人,
故答案为200;
(2)∵喜欢生活类书籍的人数占总人数的15%,
∴喜欢生活类书籍的人数为:200×15%=30人,
∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,
如图所示:
(3)∵喜欢社科类书籍的人数为:24人,
∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,
∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,
∴小说类所在圆心角为:360°×35%=126°;
(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.
【点睛】
此题考查扇形统计图和条形统计图,看懂图中数据是解题关键
26、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
【解析】
(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
(2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;
(3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.
【详解】
解:(1)把代入,
可以求得
∴
(2)过点作轴分别交线段和轴于点,
在中,令,得
设直线的解析式为
可求得直线的解析式为:
∵S四边形ABCD
设
当时,有最大值
此时四边形ABCD面积有最大值
(3)如图所示,
如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
∵C(0,-3)
∴设P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
∵C(0,-3)
∴设P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此时存在点P2(,3)和P3(,3),
综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).
【点睛】
此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.
27、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
【详解】
(1)∵△CDE是等边三角形,
∴∠CED=60°,
∴∠EDB=60°﹣∠B=10°,
∴∠EDB=∠B,
∴DE=EB;
(2) ED=EB, 理由如下:
取AB的中点O,连接CO、EO,
∵∠ACB=90°,∠ABC=10°,
∴∠A=60°,OC=OA,
∴△ACO为等边三角形,
∴CA=CO,
∵△CDE是等边三角形,
∴∠ACD=∠OCE,
∴△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,
∴△COE≌△BOE,
∴EC=EB,
∴ED=EB;
(1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,△COE≌△BOE,
∴EC=EB,
∴ED=EB,
∵EH⊥AB,
∴DH=BH=1,
∵GE∥AB,
∴∠G=180°﹣∠A=120°,
∴△CEG≌△DCO,
∴CG=OD,
设CG=a,则AG=5a,OD=a,
∴AC=OC=4a,
∵OC=OB,
∴4a=a+1+1,
解得,a=2,
即CG=2.
相关试卷
这是一份湖南省株洲市第十九中学2022年中考数学对点突破模拟试卷含解析,共23页。
这是一份2022年湖南省益阳市普通重点中学中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,我省2013年的快递业务量为1,定义运算“※”为等内容,欢迎下载使用。
这是一份2022年湖南省株洲市第十九中学中考冲刺卷数学试题含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。