|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届湖南省长沙市明德旗舰中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022届湖南省长沙市明德旗舰中考数学模拟预测题含解析01
    2022届湖南省长沙市明德旗舰中考数学模拟预测题含解析02
    2022届湖南省长沙市明德旗舰中考数学模拟预测题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖南省长沙市明德旗舰中考数学模拟预测题含解析

    展开
    这是一份2022届湖南省长沙市明德旗舰中考数学模拟预测题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为(  )

    A.7 B.8 C.9 D.10
    2.估计的值在( )
    A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间
    3.下列图案中,是轴对称图形的是( )
    A. B. C. D.
    4.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
    A.4 B.5 C.6 D.7
    5.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

    A.11 B.10 C.9 D.16
    6.已知点,与点关于轴对称的点的坐标是( )
    A. B. C. D.
    7.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
    节约用水量(单位:吨)
    1
    1.1
    1.4
    1
    1.5
    家庭数
    4
    6
    5
    3
    1
    这组数据的中位数和众数分别是( )
    A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
    8.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )

    A.0.1 B.0.2
    C.0.3 D.0.4
    9.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是(  )

    A.①④⑤ B.①②④ C.①③④ D.①③⑤
    10.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
    A.42,41 B.41,42 C.41,41 D.42,45
    11.如图,从圆外一点引圆的两条切线,,切点分别为,,如果, ,那么弦AB的长是( )

    A. B. C. D.
    12.如图所示的几何体的主视图是( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知x=2是一元二次方程x2﹣2mx+4=0的一个解, 则m的值为 .
    14.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
    15.如图,在中,AB为直径,点C在上,的平分线交于D,则______

    16.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    17.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.

    18.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.

    (1)如图1,当点E在边BC上时,求证DE=EB;
    (2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
    (1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
    20.(6分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
    21.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
    22.(8分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.
    (1)小张如何进货,使进货款恰好为1300元?
    (2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?
    23.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
    (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是  ;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   ;
    (3)△A2B2C2的面积是   平方单位.

    24.(10分)下面是“作三角形一边上的高”的尺规作图过程.
    已知:△ABC.
    求作:△ABC的边BC上的高AD.
    作法:如图2,

    (1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;
    (2)作直线AE交BC边于点D.所以线段AD就是所求作的高.
    请回答:该尺规作图的依据是______.
    25.(10分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

    26.(12分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
    (1)求证:∠BDA=∠ECA.
    (2)若m=,n=3,∠ABC=75°,求BD的长.
    (3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
    (4)试探究线段BF,AE,EF三者之间的数量关系。

    27.(12分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    根据三视图知,该几何体中小正方体的分布情况如下图所示:

    所以组成这个几何体的小正方体个数最多为9个,
    故选C.
    【点睛】
    考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
    2、B
    【解析】
    ∵9<11<16,
    ∴,

    故选B.
    3、B
    【解析】
    根据轴对称图形的定义,逐一进行判断.
    【详解】
    A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
    故选B.
    【点睛】
    本题考查的是轴对称图形的定义.
    4、C
    【解析】
    试题解析:∵多边形的每一个内角都等于120°,
    ∴多边形的每一个外角都等于180°-120°=10°,
    ∴边数n=310°÷10°=1.
    故选C.
    考点:多边形内角与外角.
    5、B
    【解析】
    根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
    【详解】
    如图,∵四边形ABCD是矩形,
    ∴AD=BC,∠D=∠B=90°,
    根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
    ∴HC=BC,∠H=∠B,
    又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
    ∴∠HCE=∠BCF,
    在△EHC和△FBC中,
    ∵,
    ∴△EHC≌△FBC,
    ∴BF=HE,
    ∴BF=HE=DE,
    设BF=EH=DE=x,
    则AF=CF=9﹣x,
    在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
    解得:x=4,即DE=EH=BF=4,
    则AG=DE=EH=BF=4,
    ∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
    ∴EF2=EG2+GF2=32+12=10,
    故选B.

    【点睛】
    本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
    6、C
    【解析】
    根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
    【详解】
    解:点,与点关于轴对称的点的坐标是,
    故选:C.
    【点睛】
    本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    7、D
    【解析】
    分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    详解:这组数据的中位数是;
    这组数据的众数是1.1.
    故选D.
    点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    8、B
    【解析】
    ∵在5.5~6.5组别的频数是8,总数是40,
    ∴=0.1.
    故选B.
    9、D
    【解析】
    根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
    【详解】
    解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
    故①正确
    则AE=10﹣4=6
    t=10时,△BPQ的面积等于
    ∴AB=DC=8

    故②错误
    当14<t<22时,
    故③正确;
    分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
    则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
    此时,满足条件的点有4个,故④错误.
    ∵△BEA为直角三角形
    ∴只有点P在DC边上时,有△BPQ与△BEA相似
    由已知,PQ=22﹣t
    ∴当或时,△BPQ与△BEA相似
    分别将数值代入
    或,
    解得t=(舍去)或t=14.1
    故⑤正确
    故选:D.
    【点睛】
    本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
    形判定,应用了分类讨论和数形结合的数学思想.
    10、C
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
    所以本题这组数据的中位数是 1,众数是 1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    11、C
    【解析】
    先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解.
    【详解】
    解:,PB为的切线,


    为等边三角形,

    故选C.
    【点睛】
    本题考查切线长定理,掌握切线长定理是解题的关键.
    12、C
    【解析】
    主视图就是从正面看,看列数和每一列的个数.
    【详解】
    解:由图可知,主视图如下

    故选C.
    【点睛】
    考核知识点:组合体的三视图.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.
    试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,
    ∴4-4m+4=0,
    ∴m=1.
    考点:一元二次方程的解.
    14、5 1.
    【解析】
    ∵一组数据:3,a,4,6,7,它们的平均数是5,
    ∴,
    解得,,
    ∴=1.
    故答案为5,1.
    15、1
    【解析】
    由AB为直径,得到,由因为CD平分,所以,这样就可求出.
    【详解】
    解:为直径,

    又平分,


    故答案为1.
    【点睛】
    本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度.
    16、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
    17、
    【解析】
    先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.
    【详解】
    解:根据题意得2π×PA=3×2π×1,
    所以PA=3,
    所以圆锥的高OP=
    故答案为.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    18、2
    【解析】
    试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.

    在直角△OCE中,
    则AE=OA−OE=5−3=2.
    故答案为2.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
    【解析】
    (1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
    (2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
    (1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
    【详解】
    (1)∵△CDE是等边三角形,
    ∴∠CED=60°,
    ∴∠EDB=60°﹣∠B=10°,
    ∴∠EDB=∠B,
    ∴DE=EB;
    (2) ED=EB, 理由如下:
    取AB的中点O,连接CO、EO,
    ∵∠ACB=90°,∠ABC=10°,
    ∴∠A=60°,OC=OA,
    ∴△ACO为等边三角形,
    ∴CA=CO,
    ∵△CDE是等边三角形,
    ∴∠ACD=∠OCE,
    ∴△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,
    ∴△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB;
    (1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB,
    ∵EH⊥AB,
    ∴DH=BH=1,
    ∵GE∥AB,
    ∴∠G=180°﹣∠A=120°,
    ∴△CEG≌△DCO,
    ∴CG=OD,
    设CG=a,则AG=5a,OD=a,
    ∴AC=OC=4a,
    ∵OC=OB,
    ∴4a=a+1+1,
    解得,a=2,
    即CG=2.

    20、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.
    【解析】
    (1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.
    【详解】
    (1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
    依题意,得:,
    解得:.
    答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.
    (2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,
    依题意,得:60m+45(50﹣m)≤2550,
    解得:m≤1.
    答:最多可以购进1筒甲种羽毛球.
    【点睛】
    本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
    21、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
    【解析】
    (2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
    (2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
    【详解】
    解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
    解得 k≥﹣2.
    ∵k为负整数,
    ∴k=﹣2,﹣2.
    (2)当k=﹣2时,不符合题意,舍去;
    当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
    【点睛】
    本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
    22、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
    【解析】
    (1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;
    (2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.
    【详解】
    (1)设A种文具进货x只,B种文具进货只,由题意得:

    解得:x=40,

    答:A种文具进货40只,B种文具进货60只;
    (2)设购进A型文具a只,则有,且;
    解得:,
    ∵a为整数,
    ∴a=48、49、50,一共有三种购货方案;
    利润,
    ∵,w随a增大而减小,
    当a=48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
    【点睛】
    本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.
    23、(1)(2,﹣2);
    (2)(1,0);
    (3)1.

    【解析】
    试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
    (2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
    (3)利用等腰直角三角形的性质得出△A2B2C2的面积.
    试题解析:(1)如图所示:C1(2,﹣2);
    故答案为(2,﹣2);
    (2)如图所示:C2(1,0);
    故答案为(1,0);
    (3)∵=20,=20,=40,
    ∴△A2B2C2是等腰直角三角形,
    ∴△A2B2C2的面积是:××=1平方单位.
    故答案为1.

    考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
    24、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线
    【解析】
    利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高
    【详解】
    解:由作法得BC垂直平分AE,
    所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.
    故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.
    【点睛】
    此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.
    25、(1)详见解析;(2)tan∠ADP=.
    【解析】
    (1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;
    (2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.
    【详解】
    (1)证明:∵AE垂直平分BF,
    ∴AB=AF,
    ∴∠BAE=∠FAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠FAE=∠AEB,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴AF=BE.
    ∵AF∥BC,
    ∴四边形ABEF是平行四边形.
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)解:作PH⊥AD于H,
    ∵四边形ABEF是菱形,∠ABC=60°,AB=4,
    ∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
    ∴AP=AB=2,
    ∴PH=,DH=5,
    ∴tan∠ADP==.

    【点睛】
    本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.
    26、135° m+n
    【解析】
    试题分析:
    (1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
    (2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
    (4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
    试题解析:
    (1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
    ∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
    ∴△EAC≌△BAD,
    ∴∠BDA=∠ECA;
    (2)如下图,过点E作EG⊥CB交CB的延长线于点G,
    ∴∠EGB=90°,
    ∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
    ∴∠ABE=45°,BE=2,
    ∵∠ABC=75°,
    ∴∠EBG=180°-75°-45°=60°,
    ∴BG=1,EG=,
    ∴GC=BG+BC=4,
    ∴CE=,
    ∵△EAC≌△BAD,
    ∴BD=EC=;

    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
    ∵BD=EC,
    ∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
    即当∠ABC=135°时,BD最大=;
    (4)∵△ABD≌△AEC,
    ∴∠AEC=∠ABD,
    ∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
    ∴∠ABD+∠ABE+∠CEB=90°,
    ∴∠BFE=180°-90°=90°,
    ∴EF2+BF2=BE2,
    又∵在等腰Rt△ABE中,BE2=2AE2,
    ∴2AE2=EF2+BF2.
    点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
    27、证明见解析.
    【解析】
    【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.
    【详解】∵AB∥CD,∴∠A=∠D,
    ∵CE∥BF,∴∠AHB=∠DGC,
    在∆ABH和∆DCG中,

    ∴∆ABH≌∆DCG(AAS),∴AH=DG,
    ∵AH=AG+GH,DG=DH+GH,∴AG=HD.
    【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.

    相关试卷

    湖南省长沙市2023-2024学年中考数学模拟预测题(含解析): 这是一份湖南省长沙市2023-2024学年中考数学模拟预测题(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析: 这是一份2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析,共20页。试卷主要包含了计算3–,如图等内容,欢迎下载使用。

    2022届湖南长沙明德旗舰达标名校中考一模数学试题含解析: 这是一份2022届湖南长沙明德旗舰达标名校中考一模数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,在平面直角坐标系中,将点P等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map