|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析01
    2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析02
    2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析

    展开
    这是一份2022届湖南省浏阳市部分校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔,某商品的进价为每件元等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( )
    A.在⊙O内 B.在⊙O上
    C.在⊙O外 D.不能确定
    2.-5的相反数是( )
    A.5 B. C. D.
    3.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k值为(  )

    A.﹣14 B.14 C.7 D.﹣7
    4.不等式组的解集是(  )
    A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
    5.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )
    A. B. C. D.
    6.某商品的进价为每件元.当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件.现在要使利润为元,每件商品应降价( )元.
    A.3 B.2.5 C.2 D.5
    7.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是(  )

    A.110 B.158 C.168 D.178
    8.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=的图象恰好经过点A′、B,则k的值是(  )

    A.9 B. C. D.3
    9.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是( )
    A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含
    10.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是(  )
    A.千里江山图
    B.京津冀协同发展
    C.内蒙古自治区成立七十周年
    D.河北雄安新区建立纪念
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;
    12.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.
    13.函数的定义域是________.
    14.不等式>4﹣x的解集为_____.
    15.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.

    16.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.

    三、解答题(共8题,共72分)
    17.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
    (1)求y与x之间的函数关系式,并写出自变量x的取值范围;
    (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

    18.(8分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
    (1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.
    (2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.
    (3)在(2)的条件下,求线段DE的长度.

    19.(8分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.

    图 ①
    (2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.

    图 ②
    20.(8分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.

    (1)已知点A的坐标为,
    ①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;
    ②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.
    (2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.
    21.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.

    (1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
    (2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
    22.(10分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.
    求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.
    23.(12分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
    求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
    24.如图,抛物线交X轴于A、B两点,交Y轴于点C ,.

    (1)求抛物线的解析式;
    (2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B.
    【解析】
    试题解析:∵OP=5,
    ∴根据点到圆心的距离等于半径,则知点在圆上.
    故选B.
    考点:1.点与圆的位置关系;2.坐标与图形性质.
    2、A
    【解析】
    由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
    故选A.
    3、B
    【解析】
    过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,
    ∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,
    ∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,
    ∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k,故选B.
    4、D
    【解析】
    由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
    5、D
    【解析】
    分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.
    详解:设乘公交车平均每小时走x千米,根据题意可列方程为:

    故选D.
    点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.
    6、A
    【解析】
    设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.
    【详解】
    解:设售价为x元时,每星期盈利为6120元,
    由题意得(x-40)[300+20(60-x)]=6120,
    解得:x1=57,x2=1,
    由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.
    ∴每件商品应降价60-57=3元.
    故选:A.
    【点睛】
    本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
    7、B
    【解析】
    根据排列规律,10下面的数是12,10右面的数是14,
    ∵8=2×4−0,22=4×6−2,44=6×8−4,
    ∴m=12×14−10=158.
    故选C.
    8、C
    【解析】
    设B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根据相似三角形或锐角三角函数可求得A′(,),根据反比例函数性质k=xy建立方程求k.
    【详解】
    如图,过点C作CD⊥x轴于D,过点A′作A′G⊥x轴于G,连接AA′交射线OC于E,过E作EF⊥x轴于F,

    设B(,2),
    在Rt△OCD中,OD=3,CD=2,∠ODC=90°,
    ∴OC==,
    由翻折得,AA′⊥OC,A′E=AE,
    ∴sin∠COD=,
    ∴AE=,
    ∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,
    ∴∠OAE=∠OCD,
    ∴sin∠OAE==sin∠OCD,
    ∴EF=,
    ∵cos∠OAE==cos∠OCD,
    ∴,
    ∵EF⊥x轴,A′G⊥x轴,
    ∴EF∥A′G,
    ∴,
    ∴,,
    ∴,
    ∴A′(,),
    ∴,
    ∵k≠0,
    ∴,
    故选C.
    【点睛】
    本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.
    9、A
    【解析】
    直接利用点与圆的位置关系进而得出答案.
    【详解】
    解:∵⊙O的半径为5cm,OA=4cm,
    ∴点A与⊙O的位置关系是:点A在⊙O内.
    故选A.
    【点睛】
    此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.
    10、C
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
    B选项不是中心对称图形,故本选项错误;
    C选项为中心对称图形,故本选项正确;
    D选项不是中心对称图形,故本选项错误.
    故选C.
    【点睛】
    本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、>
    【解析】
    根据反比例函数的性质求解.
    【详解】
    反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,
    而a<b<0,
    所以y1>y2
    故答案为:>
    【点睛】
    本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.
    12、1
    【解析】
    根据平移规律“左加右减,上加下减”填空.
    【详解】
    解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,
    解得m=1.
    故答案是:1.
    【点睛】
    主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.
    13、x≥-1
    【解析】
    分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    详解:根据题意得:x+1≥0,解得:x≥﹣1.
    故答案为x≥﹣1.
    点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:
    (1)当函数表达式是整式时,定义域可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (1)当函数表达式是二次根式时,被开方数非负.
    14、x>1.
    【解析】
    按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.
    【详解】
    解:去分母得:x﹣1>8﹣2x,
    移项合并得:3x>12,
    解得:x>1,
    故答案为:x>1
    【点睛】
    本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.
    15、1
    【解析】
    过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.
    【详解】
    解:过A作x轴垂线,过B作x轴垂线,

    点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
    ∴A(1,1),B(2,),
    ∵AC∥BD∥y轴,
    ∴C(1,k),D(2,),
    ∵△OAC与△ABD的面积之和为,

    S△ABD=S梯形AMND﹣S梯形AAMNB,

    ∴k=1,
    故答案为1.
    【点睛】
    本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.
    16、1
    【解析】
    根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.
    【详解】
    设小明的速度为akm/h,小亮的速度为bkm/h,

    解得, ,
    当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),
    故答案为1.
    【点睛】
    此题考查一次函数的应用,解题关键在于列出方程组.

    三、解答题(共8题,共72分)
    17、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【解析】
    根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
    【详解】
    (1).
    (2) 根据题意,得:


    ∴当时,随x的增大而增大

    ∴当时,取得最大值,最大值是144
    答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【点睛】
    熟悉掌握图中所给信息以及列方程组是解决本题的关键.
    18、(1)(2)四边形是菱形.(3)
    【解析】
    (1)根据等边对等角及旋转的特征可得即可证得结论;
    (2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;
    (3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果.
    【详解】
    (1)
    证明:(证法一)
    由旋转可知,

    ∴又
    ∴即
    (证法二)
    由旋转可知,而

    ∴∴

    (2)四边形是菱形.
    证明:同理
    ∴四边形是平行四边形.
    又∴四边形是菱形
    (3)过点作于点,则
    在中,

    .由(2)知四边形是菱形,


    【点睛】
    解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.
    19、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
    【解析】
    (1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
    【详解】
    (1)(1)当AB是过P点的直径时,AB最长=2×2=4;
    当AB⊥OP时,AB最短, AP=
    ∴AB=2
    (2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
    再做△AEC的外接圆,
    当D与E重合时,S△ADC最大
    故此时四边形ABCD的面积最大,
    ∵∠ABC=90°,AB=80,BC=60
    ∴AC=
    ∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
    S△ADC=
    S△ABC=
    ∴四边形ABCD面积最大值为(2500+2400)平方米.

    【点睛】
    此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
    20、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或
    【解析】
    (1)①根据“和谐点”的定义即可解决问题;
    ②首先求出点C坐标,再利用待定系数法即可解决问题;
    (2)分两种情形画出图形即可解决问题.
    【详解】
    (1)①如图1.

    观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);
    ②如图2.

    由图可知,B(5,3).
    ∵A(1,3),∴AB=3.
    ∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).
    设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.
    综上所述:直线AC的表达式是y=x+2或y=﹣x+3.
    (2)分两种情况讨论:
    ①当点F在点E左侧时:

    连接OD.则OD=,∴.
    ②当点F在点E右侧时:

    连接OE,OD.
    ∵E(1,2),D(1,3),∴OE=,OD=,∴.
    综上所述:或.
    【点睛】
    本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.
    21、(1)50,360;(2) .
    【解析】
    试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;
    (2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.
    试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)
    由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)
    (2)树状图:

    由树状图可知共有12种结果,抽到1男1女分别为共8种.

    考点:1、扇形统计图,2、条形统计图,3、概率
    22、(1)y=-.y=x-1.(1)x<2.
    【解析】
    分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.
    详解:(1)∵, 点A(5,2),点B(2,3),

    又∵点C在y轴负半轴,点D在第二象限,
    ∴点C的坐标为(2,-1),点D的坐标为(-1,3).
    ∵点在反比例函数y=的图象上,

    ∴反比例函数的表达式为

    将A(5,2)、B(2,-1)代入y=kx+b,
    ,解得:
    ∴一次函数的表达式为.
    (1)将代入,整理得:

    ∴一次函数图象与反比例函数图象无交点.
    观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,
    ∴不等式>kx+b的解集为x<2.
    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    23、(1)证明见解析;(2)
    【解析】
    (1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
    【详解】
    (1)连接
    ∵平分,
    ∴,
    ∵ ,
    ∴,
    ∴,
    ∴OD//AC,
    ∴,

    又是的半径,
    ∴是的切线
    (2)由题意得
    ∵是弧的中点
    ∴弧弧

    ∴弧弧
    ∴弧弧弧

    在中


    .

    【点睛】
    本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.
    24、(1);(2) (3,-4) 或(5,4)或(-5,4)
    【解析】
    (1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;
    (2)先画出存在的点,然后通过平移和计算确定坐标;
    【详解】
    解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)
    设抛物线的解析式为y=ax2+bx+c
    则有: 解得
    所以函数解析式为:
    (2)存在,(3,-4) 或(5,4)或(-5,4)
    理由如下:如图:

    P1相当于C点向右平移了5个单位长度,则坐标为(5,4);
    P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);
    设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,
    则有A P3=BC, B P3=AC
    ∴ 即 (舍去)
    P3坐标为(3,-4)
    【点睛】
    本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.

    相关试卷

    湖南省浏阳市部分校2022年中考数学猜题卷含解析: 这是一份湖南省浏阳市部分校2022年中考数学猜题卷含解析,共24页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。

    2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析: 这是一份2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了答题时请按要求用笔,计算的结果是等内容,欢迎下载使用。

    2022届山东省滨州市部分校中考数学考试模拟冲刺卷含解析: 这是一份2022届山东省滨州市部分校中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,属于必然事件的是,下列事件是确定事件的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map