2022届吉林省通化市外国语学校中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )
A.经过集中喷洒药物,室内空气中的含药量最高达到
B.室内空气中的含药量不低于的持续时间达到了
C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
2.如图所示的正方体的展开图是( )
A. B. C. D.
3.已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于( )
A.12πcm2
B.15πcm2
C.24πcm2
D.30πcm2
4.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1 B.2 C.3 D.4
5.据调查,某班20为女同学所穿鞋子的尺码如表所示,
尺码(码)
34
35
36
37
38
人数
2
5
10
2
1
则鞋子尺码的众数和中位数分别是( )
A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码
6.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为( )
A.0.286×105 B.2.86×105 C.28.6×103 D.2.86×104
7.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )
A.40° B.60° C.80° D.100°
8.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)
甲种糖果
乙种糖果
混合糖果
方案1
2
3
5
方案2
3
2
5
方案3
2.5
2.5
5
则最省钱的方案为( )
A.方案1 B.方案2
C.方案3 D.三个方案费用相同
9.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A.3步 B.5步 C.6步 D.8步
10.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.
12.已知m=,n=,那么2016m﹣n=_____.
13.分解因式:4a2﹣1=_____.
14.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
15.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.
16.已知a+=2,求a2+=_____.
三、解答题(共8题,共72分)
17.(8分)计算:sin30°﹣+(π﹣4)0+|﹣|.
18.(8分)如图,在平行四边形中,的平分线与边相交于点.
(1)求证;
(2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.
19.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
20.(8分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
21.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
22.(10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
23.(12分)在数学课上,老师提出如下问题:
小楠同学的作法如下:
老师说:“小楠的作法正确.”
请回答:小楠的作图依据是______________________________________________.
24.某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
利用图中信息一一判断即可.
【详解】
解: A、正确.不符合题意.
B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
D、正确.不符合题意,
故选C.
【点睛】
本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
2、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
3、B
【解析】
由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),∴侧面积=π×3×5=15π(cm2),故选B.
4、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
【点睛】
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
5、D
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
数据36出现了10次,次数最多,所以众数为36,
一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.
故选D.
【点睛】
考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.
6、D
【解析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可
【详解】
28600=2.86×1.故选D.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键
7、D
【解析】
根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵l1∥l2,
∴∠3=∠1=60°,
∴∠2=∠A+∠3=40°+60°=100°.
故选D.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
8、A
【解析】
求出三种方案混合糖果的单价,比较后即可得出结论.
【详解】
方案1混合糖果的单价为,
方案2混合糖果的单价为,
方案3混合糖果的单价为.
∵a>b,
∴,
∴方案1最省钱.
故选:A.
【点睛】
本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.
9、C
【解析】
试题解析:根据勾股定理得:斜边为
则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,
故选C
10、A
【解析】
根据题意,将运动过程分成两段.分段讨论求出解析式即可.
【详解】
∵BD=2,∠B=60°,
∴点D到AB距离为,
当0≤x≤2时,
y=;
当2≤x≤4时,y=.
根据函数解析式,A符合条件.
故选A.
【点睛】
本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
解:∵把x=1分别代入、,得y=1、y=,
∴A(1,1),B(1,).∴.
∵P为y轴上的任意一点,∴点P到直线BC的距离为1.
∴△PAB的面积.
故答案为:.
12、1
【解析】
根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.
【详解】
解:∵m===,
∴m=n,
∴2016m-n=20160=1.
故答案为:1
【点睛】
本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.
13、(2a+1)(2a﹣1)
【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
【详解】
4a2﹣1=(2a+1)(2a﹣1).
故答案为:(2a+1)(2a-1).
【点睛】
此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.
14、或
【解析】
分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
【详解】
解:当0°<x°≤90°时,如图所示:连接OC,
由圆周角定理得,∠BOC=2∠A=2x°,
∴∠DOC=180°-2x°,
∴∠OBC所对的劣弧长=,
当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
故答案为:或.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.
15、
【解析】
先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.
【详解】
解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,
∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.
故答案为:.
【点睛】
本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.
16、1
【解析】
试题分析:∵==4,∴=4-1=1.故答案为1.
考点:完全平方公式.
三、解答题(共8题,共72分)
17、1.
【解析】
分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.
详解:原式=﹣2+1+=1.
点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.
18、(1)见解析;(2)菱形.
【解析】
(1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;
(2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.
【详解】
(1)∵DE平分∠ADC,
∴∠ADE=∠CDE.
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,AD=BC,AB=CD.
∵∠AED=∠CDE.
∴∠ADE=∠AED.
∴AD=AE.
∴BC=AE.
∵AB=AE+EB.
∴BE+BC=CD.
(2)菱形,理由如下:
由(1)可知,AD=AE,
∵点E与B重合,
∴AD=AB.
∵四边形ABCD是平行四边形
∴平行四边形ABCD为菱形.
【点睛】
本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.
19、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
【解析】
(1)利用列举法,列举所有的可能情况即可;
(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
【详解】
(1)所有可能出现的结果如下:,,,,,,,,共9种;
(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
∴在规划1中,(小黄赢);
红心牌点数是黑桃牌点数的整倍数有4种可能,
∴在规划2中,(小黄赢).
∵,∴小黄要在游戏中获胜,小黄会选择规则1.
【点睛】
考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
20、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【解析】
(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
【详解】
(1)设购进甲种商品x件,购进乙商品y件,
根据题意得:
,
解得:,
答:商店购进甲种商品40件,购进乙种商品60件;
(2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
根据题意列得:
,
解得:20≤a≤22,
∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【点睛】
此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
21、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
【解析】
(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.
【详解】
试题分析:
试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,
(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,
补全条形统计图如下:
(3)100000×32%=32000(人),
答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
22、(1)见解析(2)不公平。理由见解析
【解析】
解:(1)画树状图得:
所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。
(2)这个游戏不公平。理由如下:
∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,
∴甲胜的概率为,乙胜的概率为。
∵甲胜的概率≠乙胜的概率,∴这个游戏不公平。
(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。
(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。
23、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.
【解析】
根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.
【详解】
解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的
性质:对角线互相平分即可得到BD=CD,
所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互
相平分;两点确定一条直线.
故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点
确定一条直线.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.
24、(1)A、B两种奖品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【解析】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;
(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题.
【详解】
(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:
解得:.
答:A种奖品的单价是10元、B种奖品的单价是15元.
(2)由题意可得:W=10m+15(100﹣m)=﹣5m+1.
∵A种奖品的数量不大于B种奖品数量的3倍,∴m≤3(100﹣m),解得:m≤75
∴当m=75时,W取得最小值,此时W=﹣5×75+1=2.
答:W(元)与m(件)之间的函数关系式是W=﹣5m+1,当购买A种奖品75件时,费用W的值最少.
【点睛】
本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
2023年吉林省实验学校中考数学三模试卷(含解析): 这是一份2023年吉林省实验学校中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年吉林省白山市临江外国语学校、临江三中、光华中学中考数学四模试卷(含解析): 这是一份2023年吉林省白山市临江外国语学校、临江三中、光华中学中考数学四模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省佛山外国语学校中考数学三模试题(含解析): 这是一份2023年广东省佛山外国语学校中考数学三模试题(含解析),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。