2022届吉林省长春市榆树市第二实验中学中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
2.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数(cm)
185
180
185
180
方差
3.6
3.6
7.4
8.1
根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
3.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里 B.45海里 C.20海里 D.30海里
4.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )
A.30厘米、45厘米; B.40厘米、80厘米; C.80厘米、120厘米; D.90厘米、120厘米
5.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
A.90° B.120° C.270° D.360°
6.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
A. B.
C. D.
7.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
A. B. C. D.
8.如图所示的图形,是下面哪个正方体的展开图( )
A. B. C. D.
9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A.56° B.62° C.68° D.78°
10.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.不等式组的解集是 _____________.
12.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.
13.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.
14.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.
15.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.
16.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
17.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.
三、解答题(共7小题,满分69分)
18.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1)m= ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
19.(5分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
20.(8分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
y/cm
6.9
5.3
4.0
3.3
4.5
6
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
21.(10分)直角三角形ABC中,,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F.
求证:;
若,,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积.
22.(10分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”
(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;
(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.
(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.
23.(12分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)
24.(14分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
故选A.
考点:三视图
视频
2、A
【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
∵=>=,
∴从甲和丙中选择一人参加比赛,
∵=<<,
∴选择甲参赛,
故选A.
【点睛】
此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.
3、D
【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
故选:D.
【点睛】
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
4、C
【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;
当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;
当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;
所以A、B、D选项不符合题意,C选项符合题意,
故选C.
5、B
【解析】
先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.
【详解】
∵图中是三个等边三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故选B.
【点睛】
考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
6、A
【解析】
若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
解:设走路线一时的平均速度为x千米/小时,
故选A.
7、A
【解析】
【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
【详解】作直径CG,连接OD、OE、OF、DG.
∵CG是圆的直径,
∴∠CDG=90°,则DG==8,
又∵EF=8,
∴DG=EF,
∴,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
故选A.
【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
8、D
【解析】
根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
【详解】
A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
故选D.
【点睛】
本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
9、C
【解析】
分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.
详解:∵点I是△ABC的内心,
∴∠BAC=2∠IAC、∠ACB=2∠ICA,
∵∠AIC=124°,
∴∠B=180°﹣(∠BAC+∠ACB)
=180°﹣2(∠IAC+∠ICA)
=180°﹣2(180°﹣∠AIC)
=68°,
又四边形ABCD内接于⊙O,
∴∠CDE=∠B=68°,
故选C.
点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.
10、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
二、填空题(共7小题,每小题3分,满分21分)
11、x<-1
【解析】
解不等式①得:x<5,
解不等式②得:x<-1
所以不等式组的解集是x<-1.
故答案是:x<-1.
12、1
【解析】
解:∵正六边形ABCDEF的边长为3,
∴AB=BC=CD=DE=EF=FA=3,
∴弧BAF的长=3×6﹣3﹣3═12,
∴扇形AFB(阴影部分)的面积=×12×3=1.
故答案为1.
【点睛】
本题考查正多边形和圆;扇形面积的计算.
13、3.1或4.32或4.2
【解析】
【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.
【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,
∴AB==5,S△ABC=AB•BC=1.
沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:
①当AB=AP=3时,如图1所示,
S等腰△ABP=•S△ABC=×1=3.1;
②当AB=BP=3,且P在AC上时,如图2所示,
作△ABC的高BD,则BD=,
∴AD=DP==1.2,
∴AP=2AD=3.1,
∴S等腰△ABP=•S△ABC=×1=4.32;
③当CB=CP=4时,如图3所示,
S等腰△BCP=•S△ABC=×1=4.2;
综上所述:等腰三角形的面积可能为3.1或4.32或4.2,
故答案为:3.1或4.32或4.2.
【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.
14、
【解析】
解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,
过点M作MF⊥DC于点F,
∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
∴2MD=AD=CD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD=MD=1,
∴FM=DM×cos30°=,
∴,
∴A′C=MC﹣MA′=.
故答案为.
【点评】
此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.
15、
【解析】
由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.
【详解】
解:∵DE∥AC,
∴DB:AB=BE:BC,
∵DB=4,AB=6,BE=3,
∴4:6=3:BC,
解得:BC=,
∴EC=BC﹣BE=﹣3=.
故答案为.
【点睛】
考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
16、直角三角形.
【解析】
根据题意,画出图形,用垂直平分线的性质解答.
【详解】
点O落在AB边上,
连接CO,
∵OD是AC的垂直平分线,
∴OC=OA,
同理OC=OB,
∴OA=OB=OC,
∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
∴∠C是直角.
∴这个三角形是直角三角形.
【点睛】
本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.
17、
【解析】
由题中所给条件证明△ADF△ACG,可求出的值.
【详解】
解:在△ADF和△ACG中,
AB=6,AC=5,D是边AB的中点
AG是∠BAC的平分线,
∴∠DAF=∠CAG
∠ADE=∠C
∴△ADF△ACG
∴.
故答案为.
【点睛】
本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.
三、解答题(共7小题,满分69分)
18、(1)150,(2)36°,(3)1.
【解析】
(1)根据图中信息列式计算即可;
(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
(3)360°×乒乓球”所占的百分比即可得到结论;
(4)根据题意计算即可.
【详解】
(1)m=21÷14%=150,
(2)“足球“的人数=150×20%=30人,
补全上面的条形统计图如图所示;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
(4)1200×20%=1人,
答:估计该校约有1名学生最喜爱足球活动.
故答案为150,36°,1.
【点睛】
本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
19、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【解析】
试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
根据题意,2000x+2500(30-x)=68000,
解得x=14,
∴30-x=16,
答:种植A种生姜14亩,种植B种生姜16亩;
(2)由题意得,x≥(30-x),解得x≥10,
设全部收购该基地生姜的年总收入为y元,则
y=8×2000x+7×2500(30-x)=-1500x+525000,
∵y随x的增大而减小,∴当x=10时,y有最大值,
此时,30-x=20,y的最大值为510000元,
答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.
20、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
21、(1)证明见解析;(2)补图见解析;.
【解析】
根据等腰三角形的性质得到,等量代换得到,根据余角的性质即可得到结论;
根据平行线的判定定理得到AD∥BG,推出四边形ABGD是平行四边形,得到平行四边形ABGD是菱形,设AB=BG=GD=AD=x,解直角三角形得到 ,过点B作 于H,根据平行四边形的面积公式即可得到结论.
【详解】
解:,
,
,
,
,
,
,
,
;
补全图形,如图所示:
,,
,,
,,
,
,,且,
,
,
,
四边形ABGD是平行四边形,
,
平行四边形ABGD是菱形,
设,
,
,
,
过点B作于H,
.
.
故答案为(1)证明见解析;(2)补图见解析;.
【点睛】
本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.
22、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.
【解析】
(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;
(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.
【详解】
(1)∵y=x2﹣2x+3=(x﹣1)2+2,
∴抛物线上的点到x轴的最短距离为2,
∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;
(2)不同意他的看法.理由如下:
如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,
设P(t,t2﹣2t+3),则Q(t,t﹣1),
∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,
当t=时,PQ有最小值,最小值为,
∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,
而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,
∴不同意他的看法;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,
设M(t,t2﹣2t+3),则N(t,t2+c),
∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,
当t=时,MN有最小值,最小值为﹣c,
∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,
∴,
∴c=1.
【点睛】
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.
23、(1)1.7km;(2)8.9km;
【解析】
(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
【详解】
解:(1)由题意可得,
∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
∴AO=OC•tan34°,BO=OC•tan45°,
∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
即A,B两点间的距离是1.7km;
(2)由已知可得,
∠DOC=90°,OC=5km,∠DCO=56°,
∴cos∠DCO=
即
∵sin34°=cos56°,
∴
解得,CD≈8.9
答:此时雷达站C和运载火箭D两点间的距离是8.9km.
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.
24、(1)C(2)(3)b<﹣且b≠﹣2或b>
【解析】
(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
【详解】
(1)点B关于直线x=4的对称点为B′(10,﹣),
∴直线AB′解析式为:y=﹣,
当x=4时,y=,
故答案为:C
(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
作BH⊥l于点H
∵点A和A′关于直线l对称
∴∠APG=∠A′PG
∵∠BPH=∠A′PG
∴∠APG=∠BPH
∵∠AGP=∠BHP=90°
∴△AGP∽△BHP
∴,即,
∴mn=2,即m=,
∵∠APB=α,AP=AP′,
∴∠A=∠A′=,
在Rt△AGP中,tan
(3)如图,当点P位于直线AB的右下方,∠APB=60°时,
点P在以AB为弦,所对圆周为60°,且圆心在AB下方
若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
由对称性可知:∠APQ=∠A′PQ,
又∠APB=60°
∴∠APQ=∠A′PQ=60°
∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
∴∠BAQ=60°=∠AQB=∠ABQ
∴△ABQ是等边三角形
∵线段AB为定线段
∴点Q为定点
若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
∴直线y=ax+b(a≠0)过定点Q
连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
∵A(2,),B(﹣2,﹣)
∴OA=OB=
∵△ABQ是等边三角形
∴∠AOQ=∠BOQ=90°,OQ=,
∴∠AOM+∠NOD=90°
又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
∵∠AMO=∠ONQ=90°
∴△AMO∽△ONQ
∴,
∴,
∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
设直线BQ解析式为y=kx+b
将B、Q坐标代入得
,
解得
,
∴直线BQ的解析式为:y=﹣,
设直线AQ的解析式为:y=mx+n,
将A、Q两点代入,
解得 ,
∴直线AQ的解析式为:y=﹣3,
若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
又∵y=ax+b(a≠0),且点P位于AB右下方,
∴b<﹣ 且b≠﹣2或b>.
【点睛】
本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
吉林省长春市宽城区2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份吉林省长春市宽城区2022年中考数学最后冲刺浓缩精华卷含解析,共19页。
吉林省长春市高新区2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份吉林省长春市高新区2022年中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了答题时请按要求用笔,二元一次方程组的解为,下列命题中,正确的是等内容,欢迎下载使用。
2022年吉林省长春市外国语校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年吉林省长春市外国语校中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列计算正确的是,下列说法,已知等内容,欢迎下载使用。