终身会员
搜索
    上传资料 赚现金

    2022届江苏省常州市金坛区七校中考猜题数学试卷含解析

    立即下载
    加入资料篮
    2022届江苏省常州市金坛区七校中考猜题数学试卷含解析第1页
    2022届江苏省常州市金坛区七校中考猜题数学试卷含解析第2页
    2022届江苏省常州市金坛区七校中考猜题数学试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省常州市金坛区七校中考猜题数学试卷含解析

    展开

    这是一份2022届江苏省常州市金坛区七校中考猜题数学试卷含解析,共23页。试卷主要包含了下列运算结果正确的是,下列各式中的变形,错误的是,的相反数是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是(  )
    ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2

    A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④
    2.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )

    A. B. C. D.
    3.下列计算正确的是( )
    A.a²+a²=a4 B.(-a2)3=a6
    C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
    4.下列运算结果正确的是(  )
    A.x2+2x2=3x4 B.(﹣2x2)3=8x6
    C.x2•(﹣x3)=﹣x5 D.2x2÷x2=x
    5.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为(  )

    A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
    6.一个几何体的三视图如图所示,则该几何体的形状可能是(  )

    A. B.
    C. D.
    7.下列各式中的变形,错误的是((  )
    A. B. C. D.
    8.的相反数是
    A. B.2 C. D.
    9.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为(  )

    A.80° B.90° C.100° D.120°
    10.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.

    12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.

    13.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=_____.
    14.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.
    15.如果x+y=5,那么代数式的值是______.
    16.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.
    17.计算:的结果为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.
    (1)求证:AD=CD;
    (2)若AB=10,OE=3,求tan∠DBC的值.

    19.(5分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)
    小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
    请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是   三角形;∠ADB的度数为   .在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为   .
    20.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,
    (1)求一次函数的解析式.
    (2)若AC是△PCB的中线,求反比例函数的关系式.

    21.(10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.
    (1)若CE=1,求BC的长;
    (1)求证:AM=DF+ME.

    22.(10分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    23.(12分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
    24.(14分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.
    ∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,
    ∴△ABE≌△DCF,
    ∴∠ABE=∠DCF.
    ∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,
    ∴△ADG≌△CDG,
    ∴∠DAG=∠DCF,
    ∴∠ABE=∠DAG.
    ∵∠DAG+∠BAH=90°,
    ∴∠BAE+∠BAH=90°,
    ∴∠AHB=90°,
    ∴AG⊥BE,故③正确,
    同理可证:△AGB≌△CGB.
    ∵DF∥CB,
    ∴△CBG∽△FDG,
    ∴△ABG∽△FDG,故①正确.
    ∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,
    ∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.
    取AB的中点O,连接OD、OH.

    ∵正方形的边长为4,
    ∴AO=OH=×4=1,
    由勾股定理得,OD=,
    由三角形的三边关系得,O、D、H三点共线时,DH最小,
    DH最小=1-1.
    无法证明DH平分∠EHG,故②错误,
    故①③④⑤正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.
    2、B
    【解析】
    根据左视图的定义,从左侧会发现两个正方形摞在一起.
    【详解】
    从左边看上下各一个小正方形,如图

    故选B.
    3、D
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    A、原式=2a2,不符合题意;
    B、原式=-a6,不符合题意;
    C、原式=a2+2ab+b2,不符合题意;
    D、原式=-4b,符合题意,
    故选:D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    4、C
    【解析】
    直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.
    【详解】
    A选项:x2+2x2=3x2,故此选项错误;
    B选项:(﹣2x2)3=﹣8x6,故此选项错误;
    C选项:x2•(﹣x3)=﹣x5,故此选项正确;
    D选项:2x2÷x2=2,故此选项错误.
    故选C.
    【点睛】
    考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.
    5、A
    【解析】
    延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
    【详解】
    如图,点P的坐标为(-4,-3).

    故选A.
    【点睛】
    本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
    6、D
    【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
    考点:由三视图判断几何体.
    视频
    7、D
    【解析】
    根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
    【详解】
    A、,故A正确;
    B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
    C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
    D、≠,故D错误;
    故选:D.
    【点睛】
    本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
    8、B
    【解析】
    根据相反数的性质可得结果.
    【详解】
    因为-2+2=0,所以﹣2的相反数是2,
    故选B.
    【点睛】
    本题考查求相反数,熟记相反数的性质是解题的关键 .
    9、B
    【解析】
    根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.
    【详解】
    解:∵将△ABC绕点A顺时针旋转得到△ADE,
    ∴△ABC≌△ADE,
    ∴∠B=∠D,
    ∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,
    ∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,
    ∴∠CFD=∠B+∠BEF=90°,
    故选:B.
    【点睛】
    本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.
    10、C
    【解析】
    试题分析:根据主视图是从正面看得到的图形,可得答案.
    解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
    故选C.
    考点:简单组合体的三视图.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    试题解析:连接OE,如下图所示,

    则:OE=OA=R,
    ∵AB是⊙O的直径,弦EF⊥AB,
    ∴ED=DF=4,
    ∵OD=OA-AD,
    ∴OD=R-2,
    在Rt△ODE中,由勾股定理可得:
    OE2=OD2+ED2,
    ∴R2=(R-2)2+42,
    ∴R=1.
    考点:1.垂径定理;2.解直角三角形.
    12、
    【解析】
    试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:
    根据勾股定理得:,
    由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,
    ∴×5BD=4,解得:BD=.
    考点:1.网格型问题;2.勾股定理;3.三角形的面积.
    13、
    【解析】
    因为方程有实根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非负性求出a,b的值即可.
    【详解】
    ∵方程有实根,
    ∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,
    化简得:2a2+4ab+4b2﹣2a+1≤0,
    ∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,
    ∴a+2b=0,a﹣1=0,解得a=1,b=﹣,
    ∴=﹣.
    故答案为﹣.
    14、
    【解析】
    首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    列表得:
    第一次
    第二次




    黑,黑
    白,黑
    白,黑

    黑,白
    白,白
    白,白

    黑,白
    白,白
    白,白
    ∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,
    ∴两次都摸到黑球的概率是.
    故答案为:.
    【点睛】
    考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.
    15、1
    【解析】
    先将分式化简,然后将x+y=1代入即可求出答案
    【详解】
    当x+y=1时,
    原式

    =x+y=1,
    故答案为:1.
    【点睛】
    本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.
    16、2.04×1
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    解:204000用科学记数法表示2.04×1.
    故答案为2.04×1.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    17、
    【解析】
    分析:根据二次根式的性质先化简,再合并同类二次根式即可.
    详解:原式=3-5=﹣2.
    点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)tan∠DBC=.
    【解析】
    (1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到,从而有AD=CD;
    (2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.
    【详解】
    (1)证明:∵AB为直径,
    ∴∠ACB=90°,
    ∵OD∥BC,
    ∴∠AEO=∠ACB=90°,
    ∴OE⊥AC,
    ∴,
    ∴AD=CD;
    (2)解:∵AB=10,
    ∴OA=OD=5,
    ∴DE=OD﹣OE=5﹣3=2,
    在Rt△OAE中,AE==4,
    ∴tan∠DAE=,
    ∵∠DAC=∠DBC,
    ∴tan∠DBC=.
    【点睛】
    垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.
    19、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣
    【解析】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;
    ②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
    (1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).
    (3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.
    【详解】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=45°,
    ∵∠DBC=30°,
    ∴∠ABD=∠ABC﹣∠DBC=15°,
    在△ABD和△ABD′中,
    ∴△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABD′+∠ABC=60°,
    ∵BD=BD′,BD=BC,
    ∴BD′=BC,
    ∴△D′BC是等边三角形,
    ②∵△D′BC是等边三角形,
    ∴D′B=D′C,∠BD′C=60°,
    在△AD′B和△AD′C中,
    ∴△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (1)∵∠DBC<∠ABC,
    ∴60°<α≤110°,
    如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=α,
    ∴∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B
    ∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),
    ∵α+β=110°,
    ∴∠D′BC=60°,
    由(1)②可知,△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (3)第①情况:当60°<α<110°时,如图3﹣1,

    由(1)知,∠ADB=30°,
    作AE⊥BD,
    在Rt△ADE中,∠ADB=30°,AD=1,
    ∴DE=,
    ∵△BCD'是等边三角形,
    ∴BD'=BC=7,
    ∴BD=BD'=7,
    ∴BE=BD﹣DE=7﹣;
    第②情况:当0°<α<60°时,
    如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.

    同理可得:∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),
    ∴D′B=D′C,∠BD′C=60°.
    同(1)②可证△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∵∠AD′B+∠AD′C+∠BD′C=360°,
    ∴∠ADB=∠AD′B=150°,
    在Rt△ADE中,∠ADE=30°,AD=1,
    ∴DE=,
    ∴BE=BD+DE=7+,
    故答案为:7+或7﹣.
    【点睛】
    此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    20、(2)y=2x+2;(2)y=.
    【解析】
    (2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;
    (2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.
    【详解】
    (2)∵cos∠ABO=,
    ∴tan∠ABO=2.又∵OA=2
    ∴OB=2.B(-2,0)代入y=kx+2得k=2
    ∴一次函数的解析式为y=2x+2.
    (2)当x=0时,y=2,
    ∴A(0,2).
    当y=0时,2x+2=0,解得:x=﹣2.
    ∴B(﹣2,0).
    ∵AC是△PCB的中线,
    ∴P(2,4).
    ∴m=xy=2×4=4,
    ∴反例函数的解析式为y=.
    【点睛】
    本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.
    21、 (1)1;(1)见解析.
    【解析】
    试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
    (1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.
    试题解析:(1)∵四边形ABCD是菱形,
    ∴AB∥CD,
    ∴∠1=∠ACD,
    ∵∠1=∠1,
    ∴∠ACD=∠1,
    ∴MC=MD,
    ∵ME⊥CD,
    ∴CD=1CE,
    ∵CE=1,
    ∴CD=1,
    ∴BC=CD=1;
    (1)AM=DF+ME
    证明:如图,

    ∵F为边BC的中点,
    ∴BF=CF=BC,
    ∴CF=CE,
    在菱形ABCD中,AC平分∠BCD,
    ∴∠ACB=∠ACD,
    在△CEM和△CFM中,
    ∵,
    ∴△CEM≌△CFM(SAS),
    ∴ME=MF,
    延长AB交DF的延长线于点G,
    ∵AB∥CD,
    ∴∠G=∠1,
    ∵∠1=∠1,
    ∴∠1=∠G,
    ∴AM=MG,
    在△CDF和△BGF中,

    ∴△CDF≌△BGF(AAS),
    ∴GF=DF,
    由图形可知,GM=GF+MF,
    ∴AM=DF+ME.
    22、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    23、(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.
    【解析】
    (1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;
    (2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.
    【详解】
    解:(1)设第一批T恤衫每件进价是x元,由题意,得

    解得x=90
    经检验x=90是分式方程的解,符合题意.
    答:第一批T恤衫每件的进价是90元.
    (2)设剩余的T恤衫每件售价y元.
    由(1)知,第二批购进=50件.
    由题意,得120×50×+y×50×﹣4950≥650,
    解得y≥80.
    答:剩余的T恤衫每件售价至少要80元.
    24、 (1)见解析;(2).
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
    (2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论.
    【详解】
    解:(1)连接OC,

    ∵OC=OB,
    ∴∠OCB=∠B,
    ∵∠B=∠F,
    ∴∠OCB=∠F,
    ∵D为BC的中点,
    ∴OF⊥BC,
    ∴∠F+∠FCD=90°,
    ∴∠OCB+∠FCD=90°,
    ∴∠OCF=90°,
    ∴CF为⊙O的切线;
    (2)过D作DH⊥AB于H,
    ∵AO=OB,CD=DB,
    ∴OD=AC,
    ∵四边形ACFD是平行四边形,
    ∴DF=AC,
    设OD=x,
    ∴AC=DF=2x,
    ∵∠OCF=90°,CD⊥OF,
    ∴CD2=OD•DF=2x2,
    ∴CD=x,
    ∴BD=x,
    ∴AD=x,
    ∵OD=x,BD=x,
    ∴OB=x,
    ∴DH=x,
    ∴sin∠BAD==.
    【点睛】
    本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.

    相关试卷

    2023年江苏省常州市金坛区中考数学二模试卷(含解析):

    这是一份2023年江苏省常州市金坛区中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省常州市金坛区中考数学二模试卷(含解析):

    这是一份2023年江苏省常州市金坛区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省金坛市2021-2022学年中考猜题数学试卷含解析:

    这是一份江苏省金坛市2021-2022学年中考猜题数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,老师在微信群发了这样一个图,已知,代数式的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map