终身会员
搜索
    上传资料 赚现金

    2022届江苏省无锡市阴山中学中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    2022届江苏省无锡市阴山中学中考数学最后冲刺浓缩精华卷含解析第1页
    2022届江苏省无锡市阴山中学中考数学最后冲刺浓缩精华卷含解析第2页
    2022届江苏省无锡市阴山中学中考数学最后冲刺浓缩精华卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省无锡市阴山中学中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022届江苏省无锡市阴山中学中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,﹣的绝对值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
    A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF
    2.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )

    A.先向下移动1格,再向左移动1格 B.先向下移动1格,再向左移动2格
    C.先向下移动2格,再向左移动1格 D.先向下移动2格,再向左移动2格
    3.在1、﹣1、3、﹣2这四个数中,最大的数是(  )
    A.1 B.﹣1 C.3 D.﹣2
    4.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )
    A.55×106 B.0.55×108 C.5.5×106 D.5.5×107
    5.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )

    A. B.
    C. D.
    6.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为(  )

    A. B. C. D.
    7.﹣的绝对值是(  )
    A.﹣ B. C.﹣2 D.2
    8.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为(  )

    A.19° B.29° C.38° D.52°
    9.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为(  )

    A.23 B.75 C.77 D.139
    10.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.

    12.若关于的不等式组无解, 则的取值范围是 ________.
    13.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.

    14.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
    15.不等式组的解集是__________.
    16.某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为______.
    三、解答题(共8题,共72分)
    17.(8分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)

    18.(8分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
    收集数据:
    30
    60
    81
    50
    40
    110
    130
    146
    90
    100
    60
    81
    120
    140
    70
    81
    10
    20
    100
    81
    整理数据:
    课外阅读平均时间x(min)
    0≤x<40
    40≤x<80
    80≤x<120
    120≤x<160
    等级
    D
    C
    B
    A
    人数
    3
    a
    8
    b
    分析数据:
    平均数
    中位数
    众数
    80
    m
    n
    请根据以上提供的信息,解答下列问题:
    (1)填空:a=  ,b= ;m=  ,n=  ;
    (2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
    (3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
    19.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
    类别
    频数(人数)
    频率
    小说

    0.5
    戏剧
    4

    散文
    10
    0.25
    其他
    6

    合计

    1
    根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

    20.(8分)解不等式组
    21.(8分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
    (1)①已知O为坐标原点,点,,则_________,_________;
    ②点C在直线上,求出的最小值;
    (2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.

    22.(10分)(1)(﹣2)2+2sin 45°﹣
    (2)解不等式组,并将其解集在如图所示的数轴上表示出来.

    23.(12分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程两个根均为正整数,求负整数m的值.
    24.如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.
    求证:;
    若的直径长8,,求BE的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
    【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
    ∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;

    B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;

    C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
    ∵AF//CE,∴∠FAO=∠ECO,
    又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
    ∴AF CE,∴四边形AECF是平行四边形,故不符合题意;

    D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
    ∴∠ABE=∠CDF,
    又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
    ∴AE//CF,
    ∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
    故选B.

    【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
    2、C
    【解析】
    根据题意,结合图形,由平移的概念求解.
    【详解】
    由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.
    【点睛】
    本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.
    3、C
    【解析】
    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
    【详解】
    解:根据有理数比较大小的方法,可得
    -2<-1<1<1,
    ∴在1、-1、1、-2这四个数中,最大的数是1.
    故选C.
    【点睛】
    此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
    4、D
    【解析】
    试题解析:55000000=5.5×107,
    故选D.
    考点:科学记数法—表示较大的数
    5、B
    【解析】
    试题解析:∵转盘被等分成6个扇形区域,
    而黄色区域占其中的一个,
    ∴指针指向黄色区域的概率=.
    故选A.
    考点:几何概率.
    6、C
    【解析】
    在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
    在矩形OCED中,由勾股定理得:CE=OD=,
    在Rt△ACE中,由勾股定理得:AE=;故选C.
    点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
    7、B
    【解析】
    根据求绝对值的法则,直接计算即可解答.
    【详解】

    故选:B.
    【点睛】
    本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
    8、C
    【解析】
    由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.
    【详解】
    ∵AO∥BC,
    ∴∠ACB=∠OAC,
    而∠OAC=19°,
    ∴∠ACB=19°,
    ∴∠AOB=2∠ACB=38°.
    故选:C.
    【点睛】
    本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.
    9、B
    【解析】
    由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.
    【详解】
    ∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.
    ∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.
    故选B.
    【点睛】
    本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.
    10、A
    【解析】
    根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.
    【详解】
    设有x辆车,则可列方程:
    3(x-2)=2x+1.
    故选:A.
    【点睛】
    此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、∠BAD=90° (不唯一)
    【解析】
    根据正方形的判定定理添加条件即可.
    【详解】
    解:∵平行四边形 ABCD的对角线AC与BD相交于点O,且AC⊥BD,
    ∴四边形ABCD是菱形,
    当∠BAD=90°时,四边形ABCD为正方形.
    故答案为:∠BAD=90°.
    【点睛】
    本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.
    12、
    【解析】
    首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
    【详解】

    解①得:x>a+3,
    解②得:x<1.
    根据题意得:a+3≥1,
    解得:a≥-2.
    故答案是:a≥-2.
    【点睛】
    本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..
    13、
    【解析】
    利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
    【详解】
    ∵AE=EC,BD=CD,
    ∴DE∥AB,DE=AB,
    ∴△EDC∽△ABC,
    ∴=,
    故答案是:.
    【点睛】
    考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
    14、.
    【解析】
    试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
    试题解析:∵在△ABC中,∠C=90°,
    ∴∠A+∠B=90°,
    ∴cosB=sinA=.
    考点:互余两角三角函数的关系.
    15、x≥1
    【解析】
    分析:分别求出两个不等式的解,从而得出不等式组的解集.
    详解:解不等式①可得:x≥1, 解不等式②可得:x>-3, ∴不等式组的解为x≥1.
    点睛:本题主要考查的是不等式组的解集,属于基础题型.理解不等式的性质是解决这个问题的关键.
    16、
    【解析】
    试题解析:根据题意得:
    故答案为

    三、解答题(共8题,共72分)
    17、建筑物AB的高度约为5.9米
    【解析】
    在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;
    【详解】
    在Rt△CED中,∠CED=58°,
    ∵tan58°=,
    ∴DE= ,
    在Rt△CFD中,∠CFD=22°,
    ∵tan22°= ,
    ∴DF= ,
    ∴EF=DF﹣DE=-,
    同理:EF=BE﹣BF= ,
    ∴=-,
    解得:AB≈5.9(米),
    答:建筑物AB的高度约为5.9米.
    【点睛】
    考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.
    18、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本
    【解析】
    (1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;
    (2)达标的学生人数=总人数×达标率,依此即可求解;
    (3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.
    【详解】
    解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;
    (2)(人).
    答:估计达标的学生有300人;
    (3)80×52÷260=16(本).
    答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.
    【点睛】
    本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.
    19、(1)41(2)15%(3)
    【解析】
    (1)用散文的频数除以其频率即可求得样本总数;
    (2)根据其他类的频数和总人数求得其百分比即可;
    (3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
    【详解】
    (1)∵喜欢散文的有11人,频率为1.25,
    ∴m=11÷1.25=41;
    (2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
    故答案为15%;
    (3)画树状图,如图所示:

    所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
    ∴P(丙和乙)==.
    20、﹣1≤x<1.
    【解析】
    分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
    【详解】
    解不等式2x+1≥﹣1,得:x≥﹣1,
    解不等式x+1>4(x﹣2),得:x<1,
    则不等式组的解集为﹣1≤x<1.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    21、(1)①3,1;②最小值为3;(1)
    【解析】
    (1)①根据点Q与点P之间的“直距”的定义计算即可;
    ②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
    (1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
    【详解】
    解:(1)①如图1中,

    观察图象可知DAO=1+1=3,DBO=1,
    故答案为3,1.
    ②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
    (ii)当点C在坐标轴上时(,),易得为3;
    (ⅲ)当点C在第二象限时(),可得;
    (ⅳ)当点C在第四象限时(),可得;
    综上所述,当时,取得最小值为3;
    (1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.

    【点睛】
    本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
    失分原因
    第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
    (1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
    (1)不能想到由相似求出GO的值
    22、(1)4﹣5;﹣<x≤2,在数轴上表示见解析
    【解析】
    (1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;
    (2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.
    【详解】
    解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;
    (2),
    解①得:x>﹣,
    解②得:x≤2,
    不等式组的解集为:﹣<x≤2,
    在数轴上表示为:

    【点睛】
    此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.
    23、 (1)见解析;(2) m=-1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
    (2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
    【详解】
    (1)∵△=(m+3)2﹣4(m+2)
    =(m+1)2
    ∴无论m取何值,(m+1)2恒大于等于1
    ∴原方程总有两个实数根
    (2)原方程可化为:(x-1)(x-m-2)=1
    ∴x1=1, x2=m+2
    ∵方程两个根均为正整数,且m为负整数
    ∴m=-1.
    【点睛】
    本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
    24、(1)证明见解析;(2).
    【解析】
    先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;
    作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.
    【详解】
    证明:,,

    是的切线,



    平分,




    解:作于F,如图,
     的直径长8,





    在中,
    设,则,
    ,即,解得,

    故答案为(1)证明见解析;(2) .
    【点睛】
    本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.

    相关试卷

    2022年江阴山观二中中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年江阴山观二中中考数学最后冲刺浓缩精华卷含解析,共25页。

    2022年江苏省无锡市崇安区中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年江苏省无锡市崇安区中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若a与5互为倒数,则a=,已知实数a、b满足,则,对于反比例函数y=等内容,欢迎下载使用。

    2022届福建省福州延安中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届福建省福州延安中学中考数学最后冲刺浓缩精华卷含解析,共22页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map