|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届江苏省连云港市新海实验中学中考数学模试卷含解析
    立即下载
    加入资料篮
    2022届江苏省连云港市新海实验中学中考数学模试卷含解析01
    2022届江苏省连云港市新海实验中学中考数学模试卷含解析02
    2022届江苏省连云港市新海实验中学中考数学模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省连云港市新海实验中学中考数学模试卷含解析

    展开
    这是一份2022届江苏省连云港市新海实验中学中考数学模试卷含解析,共22页。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列各式计算正确的是( )
    A. B. C. D.
    2.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为(  )

    A. B. C. D.
    3.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是(  )

    A.70° B.80° C.110° D.140°
    4.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为(  )

    A.18 B.12 C.9 D.1
    5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )

    A. B.2 C. D.
    6.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是(  )

    A.①② B.②③ C.①④ D.③④
    7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
    A. B.
    C. D.
    8.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
    其中正确的结论个数为( )

    A.4 B.3 C.2 D.1
    9.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为(  )
    A.4.995×1011 B.49.95×1010
    C.0.4995×1011 D.4.995×1010
    10.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是(  )
    A.﹣1 B.3 C.﹣3 D.1
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△ABC中,DE∥BC,,则=_____.

    12.计算:____________
    13.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.

    14.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_____.
    2x
    3
    2

    y
    ﹣3


    4y

    15.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1. 则cos∠BEC=________.

    16.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.

    17.若am=5,an=6,则am+n=________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.

    (1)求证:AE=BF;(2)若BE=,AG=2,求正方形的边长.
    19.(5分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    20.(8分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
    (1)求证:△ABF≌△EDF;
    (2)若AB=6,BC=8,求AF的长.

    21.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.
    (1)求证:EF是⊙O的切线;
    (2)若∠F=30°,BF=3,求弧AD的长.

    22.(10分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
    (1)求点P的坐标;
    (2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
    (3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。

    23.(12分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.

    24.(14分)计算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
    B选项中,∵,∴本选项正确;
    C选项中,∵,而不是等于,∴本选项错误;
    D选项中,∵,∴本选项错误;
    故选B.
    2、D
    【解析】
    延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
    【详解】
    解:延长BO交⊙O于D,连接CD,

    则∠BCD=90°,∠D=∠A=60°,
    ∴∠CBD=30°,
    ∵BD=2R,
    ∴DC=R,
    ∴BC=R,
    故选D.
    【点睛】
    此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
    3、C
    【解析】
    分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
    详解:作对的圆周角∠APC,如图,

    ∵∠P=∠AOC=×140°=70°
    ∵∠P+∠B=180°,
    ∴∠B=180°﹣70°=110°,
    故选:C.
    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    4、D
    【解析】
    过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.
    【详解】
    ∵S2=48,∴BC=4,过A作AH∥CD交BC于H,则∠AHB=∠DCB.
    ∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=2,AH=CD=1.
    ∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.
    故选D.

    【点睛】
    本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.
    5、C
    【解析】
    试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4
    所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.

    考点:圆周角定理;锐角三角函数的定义.
    6、B
    【解析】
    根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
    【详解】
    解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
    将A(1,2)代入y=ax2+bx,则2=9a+1b
    ∴b=,
    ∴a﹣b=a﹣()=4a﹣>-,故②正确;
    由正弦定义sinα=,则③正确;
    不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
    则满足条件x范围为x≥1或x≤0,则④错误.
    故答案为:B.
    【点睛】
    二次函数的图像,sinα公式,不等式的解集.
    7、B
    【解析】
    设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
    【详解】
    解:设大马有匹,小马有匹,由题意得:

    故选:B.
    【点睛】
    本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
    8、B
    【解析】
    试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
    ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;
    ③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
    ④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
    ⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
    综上所述,正确的结论有①③⑤,共3个,故选B.

    考点:四边形综合题.
    9、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    将499.5亿用科学记数法表示为:4.995×1.
    故选D.
    【点睛】
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    10、B
    【解析】
    把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
    【详解】
    解:∵若,是一元二次方程的两个不同实数根,
    ∴,


    故选B.
    【点睛】
    本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.
    【详解】
    解:∵DE∥BC,,
    ∴,
    由平行条件易证△ADE△ABC,
    ∴S△ADE:S△ABC=1:9,
    ∴=.
    【点睛】
    本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.
    12、y
    【解析】
    根据幂的乘方和同底数幂相除的法则即可解答.
    【详解】

    【点睛】
    本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.
    13、60°
    【解析】
    先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.
    【详解】
    ∵DA⊥CE,
    ∴∠DAE=90°,
    ∵∠1=30°,
    ∴∠BAD=60°,
    又∵AB∥CD,
    ∴∠D=∠BAD=60°,
    故答案为60°.
    【点睛】
    本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.
    14、0
    【解析】
    根据题意列出方程组,求出方程组的解即可得到结果.
    【详解】
    解:根据题意得:,即,
    解得:,
    则x+y=﹣1+1=0,
    故答案为0
    【点睛】
    此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
    15、
    【解析】
    分析:连接BC,则∠BCE=90°,由余弦的定义求解.
    详解:连接BC,根据圆周角定理得,∠BCE=90°,
    所以cos∠BEC=.
    故答案为.
    点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.
    16、(1,)或(﹣1,)
    【解析】
    设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
    【详解】
    解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
    ∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
    ∵⊙M的半径为1,
    ∴x=1或x=−1,
    当x=1时,y=,
    当x=−1时,y=.
    ∴P点坐标为:(1, )或(−1, ).
    故答案为(1, )或(−1, ).
    【点睛】
    本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
    17、1.
    【解析】
    根据同底数幂乘法性质am·an=am+n,即可解题.
    【详解】
    解:am+n= am·an=5×6=1.
    【点睛】
    本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)正方形的边长为.
    【解析】
    (1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;
    (2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.
    【详解】
    (1)证明:∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=∠C=90°,
    ∴∠BAE+∠AEB=90°,
    ∵AE⊥BF,垂足为G,
    ∴∠CBF+∠AEB=90°,
    ∴∠BAE=∠CBF,
    在△ABE与△BCF中,

    ∴△ABE≌△BCF(ASA),
    ∴AE=BF;
    (2)解:∵四边形ABCD为正方形,
    ∴∠ABC=90°,
    ∵AE⊥BF,
    ∴∠BGE=∠ABE=90°,
    ∵∠BEG=∠AEB,
    ∴△BGE∽△ABE,
    ∴=,
    即:BE2=EG•AE,
    设EG=x,则AE=AG+EG=2+x,
    ∴()2=x•(2+x),
    解得:x1=1,x2=﹣3(不合题意舍去),
    ∴AE=3,
    ∴AB===.
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.
    19、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    20、(1)见解析;(2)
    【解析】
    (1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
    (2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.
    【详解】
    (1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,
    由折叠得:DE=CD,∠C=∠E=90°,
    ∴AB=DE,∠A=∠E=90°,
    ∵∠AFB=∠EFD,
    ∴△ABF≌△EDF(AAS);
    (2)解:∵△ABF≌△EDF,
    ∴BF=DF,
    设AF=x,则BF=DF=8﹣x,
    在Rt△ABF中,由勾股定理得:
    BF2=AB2+AF2,即(8﹣x)2=x2+62,
    x=,即AF=
    【点睛】
    本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.
    21、(1)见解析;(2)2π.
    【解析】
    证明:(1)连接OD,

    ∵AB是直径,
    ∴∠ADB=90°,即AD⊥BC,
    ∵AB=AC,
    ∴AD平分∠BAC,
    ∴∠OAD=∠CAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥EF,
    ∵OD过O,
    ∴EF是⊙O的切线.
    (2)∵OD⊥DF,
    ∴∠ODF=90°,
    ∵∠F=30°,
    ∴OF=2OD,即OB+3=2OD,
    而OB=OD,
    ∴OD=3,
    ∵∠AOD=90°+∠F=90°+30°=120°,
    ∴的长度=.
    【点睛】
    本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.
    22、(1); (2);(3)
    【解析】
    (1)联立两直线解析式,求出交点P坐标即可;
    (2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
    (3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
    【详解】
    解:(1)联立得:,解得:;
    ∴P的坐标为;
    (2)分两种情况考虑:
    当时,由F坐标为(a,0),得到OF=a,
    把E横坐标为a,代入得:即
    此时
    当时,重合的面积就是梯形面积,
    F点的横坐标为a,所以E点纵坐标为
    M点横坐标为:-3a+12,

    所以;
    (3)令中的y=0,解得:x=4,则A的坐标为(4,0)
    则AP= ,则PM=2
    又∵OP=
    ∴点P向左平移3个单位在向下平移可以得到M1
    点P向右平移3个单位在向上平移可以得到M2
    ∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
    A向右平移3个单位在向上平移可以得到 Q1(7,)
    所以,存在Q点,且坐标是
    【点睛】
    本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    23、米.
    【解析】
    先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.
    【详解】
    由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,
    设抛物线的表达式为:y=ax2+bx+1(a≠0),
    则据题意得:,
    解得:,
    ∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,
    ∵y=﹣(x﹣4)2+,
    ∴飞行的最高高度为:米.
    【点睛】
    本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.
    24、2
    【解析】
    先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.
    【详解】
    解:原式=2+2﹣+2
    =2﹣2+2
    =2.
    【点睛】
    本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.

    相关试卷

    2024年江苏省连云港市灌云实验中学中考数学一模试卷(含解析): 这是一份2024年江苏省连云港市灌云实验中学中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2024年江苏省连云港市海州区新海实验中学中考数学一模试卷(含解析): 这是一份2024年江苏省连云港市海州区新海实验中学中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省连云港市海州区新海实验中学中考数学二模试卷(含解析): 这是一份2023年江苏省连云港市海州区新海实验中学中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map