2022届江苏省南师附中集团中考数学对点突破模拟试卷含解析
展开这是一份2022届江苏省南师附中集团中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了有一组数据等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
2.已知反比例函数下列结论正确的是( )
A.图像经过点(-1,1) B.图像在第一、三象限
C.y 随着 x 的增大而减小 D.当 x > 1时, y < 1
3.的一个有理化因式是( )
A. B. C. D.
4.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
5. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
6.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
A. B. C. D.
7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是( )
A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570
C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570
8.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
9.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是( )
A.最大值2, B.最小值2 C.最大值2 D.最小值2
10.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
11.如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1<y2时( )
A.﹣1<x<l B.0<x<1或x<﹣1
C.﹣1<x<I且x≠0 D.﹣1<x<0或x>1
12.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.观察下列各等式:
……
根据以上规律可知第11行左起第一个数是__.
14.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.
15.如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.
16.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.
17.把16a3﹣ab2因式分解_____.
18.二次根式中字母x的取值范围是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.
请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?
20.(6分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.
21.(6分)(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
22.(8分)求抛物线y=x2+x﹣2与x轴的交点坐标.
23.(8分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.求的进价分别是每个多少元?该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?
24.(10分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
若AC=OD,求a、b的值;若BC∥AE,求BC的长.
25.(10分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b= ,c= ,点C的坐标为 .如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.
26.(12分)如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC交于点F.
(1)求证:FD=CD;
(2)若AE=8,tan∠E=,求⊙O的半径.
27.(12分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
2、B
【解析】
分析:直接利用反比例函数的性质进而分析得出答案.
详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;
B.反比例函数y=,图象在第一、三象限,故此选项正确;
C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;
D.反比例函数y=,当x>1时,0<y<1,故此选项错误.
故选B.
点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.
3、B
【解析】
找出原式的一个有理化因式即可.
【详解】
的一个有理化因式是,
故选B.
【点睛】
此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.
4、D
【解析】
【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
【详解】过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,AD=BD=,
∴△ABC的面积为BC•AD==,
S扇形BAC==,
∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
故选D.
【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
5、D
【解析】
分析:根据图象得出相关信息,并对各选项一一进行判断即可.
详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
故选D.
点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
6、D
【解析】
圆锥的侧面积=×80π×90=3600π(cm2) .
故选D.
7、A
【解析】
六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
故选A.
8、C
【解析】
解:在这一组数据中6是出现次数最多的,故众数是6;
而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
平均数是:(3+4+5+6+6)÷5=4.8,
故选C.
【点睛】
本题考查众数;算术平均数;中位数.
9、D
【解析】
设抛物线与x轴的两交点间的横坐标分别为:x1,x2,
由韦达定理得:
x1+x2=m-3,x1•x2=-m,
则两交点间的距离d=|x1-x2|== ,
∴m=1时,dmin=2.
故选D.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1100万=11000000=1.1×107.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11、B
【解析】
根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1
根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,−1),
∴当y1
【点睛】
本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.
12、A
【解析】
解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-1.
【解析】
观察规律即可解题.
【详解】
解:第一行=12=1,第二行=22=4,第三行=32=9...
∴第n行=n2,第11行=112=121,
又∵左起第一个数比右侧的数大一,
∴第11行左起第一个数是-1.
【点睛】
本题是一道规律题,属于简单题,认真审题找到规律是解题关键.
14、
【解析】
分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.
详解:连结OC,∵△ABC为正三角形,∴∠AOC==120°,
∵ , ∴图中阴影部分的面积等于
∴S扇形AOC=即S阴影=cm2.故答案为.
点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出∠AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.
15、(,)
【解析】
分析:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,则有△AOE≌△OCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出,设点A的坐标为(a,)(a>0),由可求出a值,进而得到点A的坐标.
详解:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,如图所示.
∵△ABC为等腰直角三角形,
∴OA=OC,OC⊥AB,
∴∠AOE+∠COF=90°.
∵∠COF+∠OCF=90°,
∴∠AOE=∠OCF.
在△AOE和△OCF中,
,
∴△AOE≌△OCF(AAS),
∴AE=OF,OE=CF.
∵BP平分∠ABC,
∴,
∴.
设点A的坐标为(a,),
∴,
解得:a=或a=-(舍去),
∴=,
∴点A的坐标为(,),
故答案为:((,)).
点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键.
16、x(x﹣1)=1
【解析】
【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.
【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:
x(x﹣1)=1,
故答案为x(x﹣1)=1.
【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
17、a(4a+b)(4a﹣b)
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
解:16a3-ab2
=a(16a2-b2)
=a(4a+b)(4a-b).
故答案为:a(4a+b)(4a-b).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
18、x≤1
【解析】
二次根式有意义的条件就是被开方数是非负数,即可求解.
【详解】
根据题意得:1﹣x≥0,
解得x≤1.
故答案为:x≤1
【点睛】
主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)25, 90°;
(2)见解析;
(3)该市 “活动时间不少于5天”的大约有1.
【解析】
试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360°即得扇形的圆心角;
(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;
(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.
(1)由图可得
该扇形圆心角的度数为90°;
(2)“活动时间为6天” 的人数,如图所示:
(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1
∴该市“活动时间不少于5天”的大约有1人.
考点:统计的应用
点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.
20、(1)7000辆;(2)a的值是1.
【解析】
(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;
(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.
【详解】
解:(1)设一月份该公司投入市场的自行车x辆,
x﹣(7500﹣110)≥10%x,
解得x≥7000,
答:一月份该公司投入市场的自行车至少有7000辆;
(2)由题意可得,
[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,
化简,得
a2﹣250a+4600=0,
解得:a1=230,a2=1,
∵,
解得a<80,
∴a=1,
答:a的值是1.
【点睛】
本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.
21、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
【详解】
(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
【点睛】
本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
22、(1,0)、(﹣2,0)
【解析】
试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可.
试题解析:解:令,即.
解得:,.
∴该抛物线与轴的交点坐标为(-2,0),(1,0).
23、(1)的进价是元,的进价是元;(2)至少购进类玩具个.
【解析】
(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;
(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等式并解答.
【详解】
解:(1)设的进价为元,则的进价为元
由题意得,
解得,
经检验是原方程的解.
所以(元)
答:的进价是元,的进价是元;
(2)设玩具个,则玩具个
由题意得:
解得.
答:至少购进类玩具个.
【点睛】
本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.
24、(1)a=,b=2;(2)BC=.
【解析】
试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
∴k=4,则y=,
∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
∵点A在y=的图象上,∴A点的坐标为:(,3),
∵一次函数y=ax+b的图象经过点A、D,
∴,
解得:,b=2;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
∵BD∥CE,且BC∥DE,
∴四边形BCED为平行四边形,
∴CE=BD=2,
∵BD∥CE,∴∠ADF=∠AEC,
∴在Rt△AFD中,tan∠ADF=,
在Rt△ACE中,tan∠AEC=,
∴=,
解得:m=1,
∴C点的坐标为:(1,0),则BC=.
考点:反比例函数与一次函数的交点问题.
25、(3)3, 2,C(﹣2,4);(2)y=﹣m2+m ,PQ与OQ的比值的最大值为;(3)S△PBA=3.
【解析】
(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
(3)求得P点坐标,利用图形割补法求解即可.
【详解】
(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.
∴A(2,4),B(4,2).
又∵抛物线过B(4,2)
∴c=2.
把A(2,4)代入y=﹣x2+bx+2得,
4=﹣×22+2b+2,解得,b=3.
∴抛物线解析式为,y=﹣x2+x+2.
令﹣x2+x+2=4,
解得,x=﹣2或x=2.
∴C(﹣2,4).
(2)如图3,
分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.
设P(m,﹣m2+m+2),Q(n,﹣n+2),
则PE=﹣m2+m+2,QD=﹣n+2.
又∵=y.
∴n=.
又∵,即
把n=代入上式得,
整理得,2y=﹣m2+2m.
∴y=﹣m2+m.
ymax=.
即PQ与OQ的比值的最大值为.
(3)如图2,
∵∠OBA=∠OBP+∠PBA=25°
∠PBA+∠CBO=25°
∴∠OBP=∠CBO
此时PB过点(2,4).
设直线PB解析式为,y=kx+2.
把点(2,4)代入上式得,4=2k+2.
解得,k=﹣2
∴直线PB解析式为,y=﹣2x+2.
令﹣2x+2=﹣x2+x+2
整理得, x2﹣3x=4.
解得,x=4(舍去)或x=5.
当x=5时,﹣2x+2=﹣2×5+2=﹣7
∴P(5,﹣7).
过P作PH⊥cy轴于点H.
则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.
S△OAB=OA•OB=×2×2=7.
S△BHP=PH•BH=×5×3=35.
∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.
【点睛】
本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.
26、(1)证明见解析;(2);
【解析】
(1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD,进而得出∠EAD=∠CAD,进而判断出△ADF≌△ADC,即可得出结论;(2)过点D作DG⊥AE,垂足为G.依据等腰三角形的性质可得到EG=AG=1,然后在Rt△GEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O的半径的长.
【详解】
(1)∵AC 是⊙O 的切线,
∴BA⊥AC,
∴∠CAD+∠BAD=90°,
∵AB 是⊙O 的直径,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∴∠CAD=∠B,
∵DA=DE,
∴∠EAD=∠E,
又∵∠B=∠E,
∴∠B=∠EAD,
∴∠EAD=∠CAD,
在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,
∴△ADF≌△ADC,
∴FD=CD.
(2)如下图所示:过点D作DG⊥AE,垂足为G.
∵DE=AE,DG⊥AE,
∴EG=AG=AE=1.
∵tan∠E=,
∴=,即=,解得DG=1.
∴ED==2.
∵∠B=∠E,tan∠E=,
∴sin∠B=,即,解得AB=.
∴⊙O的半径为.
【点睛】
本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键.
27、(1) y=-x2+2x+3;y=x+1;(2)a的值为-3或.
【解析】
(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;
(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;
②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.
【详解】
解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:
解得:b=2,c=3,
∴抛物线的解析式为y=-x2+2x+3;
当y=0时,-x2+2x+3=0,
解得:x=3,或x=-1,
∵B(3,0),
∴A(-1,0);
设直线AD的解析式为y=kx+a,
把A和D的坐标代入得:
解得:k=1,a=1,
∴直线AD的解析式为y=x+1;
(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,
则F点即为(0,3),
∵AE=-1-a=2,
∴a=-3;
②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,
设F (a-3,-3),
由-(a-3)2+2(a-3)+3=-3,
解得:a=;
综上所述,满足条件的a的值为-3或.
【点睛】
本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.
相关试卷
这是一份2024年湖南师大附中教育集团中考数学三检试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022年江苏省南京市南师附中江宁分校中考数学全真模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列等式正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份2022届江苏省南师大附中树人校中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列运算,结果正确的是,下列函数是二次函数的是,不等式组的解集在数轴上可表示为等内容,欢迎下载使用。