2022届江苏省无锡市新区中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.关于x的方程=无解,则k的值为( )
A.0或 B.﹣1 C.﹣2 D.﹣3
2.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为( )
A.32° B.42° C.46° D.48°
3.据调查,某班20为女同学所穿鞋子的尺码如表所示,
尺码(码)
34
35
36
37
38
人数
2
5
10
2
1
则鞋子尺码的众数和中位数分别是( )
A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码
4.下列各数中最小的是( )
A.0 B.1 C.﹣ D.﹣π
5.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )
A. 或
B. 或
C. 或
D.
6.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
A. B.
C. D.
7.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为( )
A.1 B.-1 C.2 D.-2
8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)
9.的相反数是( )
A.2 B.﹣2 C.4 D.﹣
10.下列各数中,为无理数的是( )
A. B. C. D.
11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330
C.(1﹣10%)2x=330 D.(1+10%)x=330
12.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).
14.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.
15.分解因式:=____
16.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 .
17.在中,,,点分别是边的中点,则的周长是__________.
18.如图,点A(3,n)在双曲线y=上,过点A作 AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.
如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.
(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程.
20.(6分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
21.(6分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.
22.(8分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.
(1)求证:△PMN是等腰三角形;
(2)将△ADE绕点A逆时针旋转,
①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;
②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.
23.(8分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.
24.(10分)解方程:
25.(10分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.
26.(12分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.
求证:四边形DECF是菱形.
27.(12分)的除以20与18的差,商是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
方程两边同乘2x(x+3),得
x+3=2kx,
(2k-1)x=3,
∵方程无解,
∴当整式方程无解时,2k-1=0,k=,
当分式方程无解时,①x=0时,k无解,
②x=-3时,k=0,
∴k=0或时,方程无解,
故选A.
2、D
【解析】
根据平行线的性质与对顶角的性质求解即可.
【详解】
∵a∥b,
∴∠BCA=∠2,
∵∠BAC=100°,∠2=32°
∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
∴∠1=∠CBA=48°.
故答案选D.
【点睛】
本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
3、D
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
数据36出现了10次,次数最多,所以众数为36,
一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.
故选D.
【点睛】
考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.
4、D
【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.
【详解】
﹣π<﹣<0<1.
则最小的数是﹣π.
故选:D.
【点睛】
本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.
5、B
【解析】
试题解析:如图所示:
分两种情况进行讨论:
当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
故选B.
点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
开口向上,开口向下.
的绝对值越大,开口越小.
6、D
【解析】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
可以列出方程:.
故选D.
7、A
【解析】
试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.
故选A
8、A
【解析】
分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.
详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,
则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),
故选A.
点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.
9、A
【解析】
分析:根据只有符号不同的两个数是互为相反数解答即可.
详解:的相反数是,即2.
故选A.
点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
10、D
【解析】
A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,
故选D.
11、D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
12、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、9π
【解析】
根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.
【详解】
∵∠C是直角,∠ABC=60°,
∴∠BAC=90°﹣60°=30°,
∴BC=AB=×6=3(cm),
∵△ABC以点B为中心顺时针旋转得到△BDE,
∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,
∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC
=S扇形ABE﹣S扇形BCD
=﹣
=11π﹣3π
=9π(cm1).
故答案为9π.
【点睛】
本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.
14、30
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.
考点:折叠图形的性质
15、x(y+2)(y-2)
【解析】
原式提取x,再利用平方差公式分解即可.
【详解】
原式=x(y2-4)=x(y+2)(y-2),
故答案为x(y+2)(y-2).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
16、1
【解析】
考点:圆锥的计算.
分析:求得扇形的弧长,除以1π即为圆锥的底面半径.
解:扇形的弧长为:=4π;
这个圆锥的底面半径为:4π÷1π=1.
点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
17、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
【点睛】
本题考查了勾股定理和三角形中位线定理.
18、2.
【解析】
先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.
【详解】
由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).
∵线段OA的垂直平分线交OC于点B,∴OB=AB.
则在△ABC中, AC=2,AB+BC=OB+BC=OC=3,
∴△ABC周长的值是2.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) D、E、F三点是同在一条直线上.(2) 6x2﹣13x+6=1.
【解析】
(1)利用切线长定理及梅氏定理即可求证;
(2)利用相似和韦达定理即可求解.
解:(1)结论:D、E、F三点是同在一条直线上.
证明:分别延长AD、BC交于点K,
由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,
再由切线长定理得:AC+CE=AF,BE=BF,
∴KE=AF.∴,
由梅涅劳斯定理的逆定理可证,D、E、F三点共线,
即D、E、F三点共线.
(2)∵AB=AC=5,BC=6,
∴A、E、I三点共线,CE=BE=3,AE=4,
连接IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四点共圆.
设⊙I的半径为r,则:,
∴,即,,
∴由△AEF∽△DEI得:
,
∴.
∴,
因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x2﹣13x+6=1.
点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.
20、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析
【解析】
(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;
(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.
【详解】
(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,
根据题意得,2x+3×3x=550,
∴x=50,
经检验,符合题意,
∴3x=150元,
即:温馨提示牌和垃圾箱的单价各是50元和150元;
(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,
根据题意得,意,
∴
∵y为正整数,
∴y为50,51,52,共3中方案;
有三种方案:①温馨提示牌50个,垃圾箱50个,
②温馨提示牌51个,垃圾箱49个,
③温馨提示牌52个,垃圾箱48个,
设总费用为w元
W=50y+150(100﹣y)=﹣100y+15000,
∵k=-100,∴w随y的增大而减小
∴当y=52时,所需资金最少,最少是9800元.
【点睛】
此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.
21、(1);(2)1.
【解析】
(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;
(2)根据EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根据S=x(12﹣x)=﹣(x﹣6)2+1,可得当x=6时,S有最大值为1.
【详解】
解:(1)∵△AEF∽△ABC,
∴,
∵边BC长为18,高AD长为12,
∴=;
(2)∵EH=KD=x,
∴AK=12﹣x,EF=(12﹣x),
∴S=x(12﹣x)=﹣(x﹣6)2+1.
当x=6时,S有最大值为1.
【点睛】
本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.
22、(1)见解析;(2)①见解析;②.
【解析】
(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;
(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;
②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论
【详解】
(1)如图1,∵点N,P是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∴△PMN是等腰三角形;
(2)①如图2,∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE,
∵点M、N、P分别是线段DE、BC、CD的中点,
∴PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形;
②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△CAE,
∴BD=CE,
如图4,连接AM,
∵M是DE的中点,N是BC的中点,AB=AC,
∴A、M、N共线,且AN⊥BC,
由勾股定理得:AN==4,
∵AD=AE=1,AB=AC=6,
∴=,∠DAE=∠BAC,
∴△ADE∽△AEC,
∴,
∴,
∴AM=,DE=,
∴EM=,
如图3,Rt△ACM中,CM===,
∴BD=CE=CM+EM=.
【点睛】
此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC
23、 (1) 反比例函数的解析式为y=,一次函数的解析式为y=﹣x+1.(2)2.
【解析】
(1)根据反比例函数y2=的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;
(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.
【详解】
(1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).
把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+1.
(2)如图,设直线y=﹣x+1与x轴交于C,则C(2,0).
S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.
【点睛】
本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.
24、x=-4是方程的解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
∴x=-4,
当x=-4时,
∴x=-4是方程的解
【点睛】
本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
25、(1)2- ;(2)
【解析】
试题分析: 点表示 向右直爬2个单位到达点,点表示的数为
把的值代入,对式子进行化简即可.
试题解析: 由题意点和点的距离为,其点的坐标为 因此点坐标
把的值代入得:
26、见解析
【解析】
证明:∵D、E是AB、AC的中点
∴DE=BC,EC=AC
∵D、F是AB、BC的中点
∴DF=AC,FC=BC
∴DE=FC=BC,EC=DF=AC
∵AC=BC
∴DE=EC=FC=DF
∴四边形DECF是菱形
27、
【解析】
根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.
【详解】
解:×÷(20﹣18)
【点睛】
考查有理数的混合运算,列出式子是解题的关键.
2022年江苏省无锡市锡东片中考四模数学试题含解析: 这是一份2022年江苏省无锡市锡东片中考四模数学试题含解析,共18页。试卷主要包含了cs60°的值等于等内容,欢迎下载使用。
2022年江苏省无锡市东湖塘中学中考数学四模试卷含解析: 这是一份2022年江苏省无锡市东湖塘中学中考数学四模试卷含解析,共20页。
2022年江苏省无锡市新区中考数学对点突破模拟试卷含解析: 这是一份2022年江苏省无锡市新区中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列二次根式,最简二次根式是,计算3×等内容,欢迎下载使用。