|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析01
    2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析02
    2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析

    展开
    这是一份2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,如图,O为原点,点A的坐标为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知,下列说法中,不正确的是( )
    A. B.与方向相同
    C. D.
    2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是(  )
    A. B. C. D.
    3.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( )
    A.90° B.120° C.150° D.180°
    4.下列说法中不正确的是(  )
    A.全等三角形的周长相等 B.全等三角形的面积相等
    C.全等三角形能重合 D.全等三角形一定是等边三角形
    5.一个几何体的三视图如图所示,那么这个几何体是( )

    A. B. C. D.
    6.如图,四边形ABCE内接于⊙O,∠DCE=50°,则∠BOE=(  )

    A.100° B.50° C.70° D.130°
    7.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=(  )

    A.6 B. C.12﹣π D.12﹣π
    8.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是(  )

    A. B. C. D.
    9.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为(  )

    A. B. C. D.
    10.估计﹣÷2的运算结果在哪两个整数之间(  )
    A.0和1 B.1和2 C.2和3 D.3和4
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.

    12.如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去……,试用图形揭示的规律计算:__________.

    13.已知a<0,那么|﹣2a|可化简为_____.
    14.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与
    直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为 .
    15.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
    16.= .
    17.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).
    三、解答题(共7小题,满分69分)
    18.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)
    小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
    请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是   三角形;∠ADB的度数为   .在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为   .
    19.(5分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.
    小何根据学习函数的经验,将此问题转化为函数问题解决.
    小华假设AE的长度为xcm,线段DE的长度为ycm.
    (当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.
    下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).
    (1)通过取点、画图、测量,得到了x与y的几组值,如下表:
    x/cm
    0
    1
    2
    3
    4
    5
    6
    7
    8
    y/cm
    0
    1.6
    2.5
    3.3
    4.0
    4.7
       
    5.8
    5.7
    当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:
    (2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;
    (3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为   cm.

    20.(8分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.

    21.(10分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).
    (1)求抛物线C1 的解析式.
    (2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.

    22.(10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

    23.(12分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.

    24.(14分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
    这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
    【详解】
    A、,故该选项说法错误
    B、因为,所以与的方向相同,故该选项说法正确,
    C、因为,所以,故该选项说法正确,
    D、因为,所以;故该选项说法正确,
    故选:A.
    【点睛】
    本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
    2、C
    【解析】
    试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.
    3、D
    【解析】
    试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.
    考点:圆锥的计算.
    4、D
    【解析】
    根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
    D.错误,全等三角也可能是直角三角,故选项正确.
    故选D.
    【点睛】
    本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
    5、C
    【解析】
    由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
    6、A
    【解析】
    根据圆内接四边形的任意一个外角等于它的内对角求出∠A,根据圆周角定理计算即可.
    【详解】
    四边形ABCE内接于⊙O,

    由圆周角定理可得,,
    故选:A.
    【点睛】
    本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).
    7、D
    【解析】
    根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
    【详解】
    解:∵BC=4,E为BC的中点,
    ∴CE=2,
    ∴S1﹣S2=3×4﹣ ,
    故选D.
    【点睛】
    此题考查扇形面积的计算,矩形的性质及面积的计算.
    8、C
    【解析】
    根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
    【详解】
    解:由题意可得,
    y==,
    当x=40时,y=6,
    故选C.
    【点睛】
    本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
    9、D
    【解析】
    如图,连接AB,

    由圆周角定理,得∠C=∠ABO,
    在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,
    ∴.
    故选D.
    10、D
    【解析】
    先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.
    【详解】
    25<32<31,∴5<<1.
    原式=﹣2÷2=﹣2,∴3<﹣÷2<2.
    故选D.
    【点睛】
    本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、8
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    由俯视图可知:底层最少有5个小立方体,
    由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,
    ∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).
    故答案为:8
    【点睛】
    考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.
    12、
    【解析】
    结合图形发现计算方法: ,即计算其面积和的时候,只需让总面积减去剩下的面积.
    【详解】
    解:原式==
    故答案为:
    【点睛】
    此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.
    13、﹣3a
    【解析】
    根据二次根式的性质和绝对值的定义解答.
    【详解】
    ∵a<0,
    ∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.
    【点睛】
    本题主要考查了根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.
    14、2
    【解析】
    解:∵OA的中点是D,点A的坐标为(﹣6,4),
    ∴D(﹣1,2),
    ∵双曲线y=经过点D,
    ∴k=﹣1×2=﹣6,
    ∴△BOC的面积=|k|=1.
    又∵△AOB的面积=×6×4=12,
    ∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.
    15、(0,0)
    【解析】
    根据坐标的平移规律解答即可.
    【详解】
    将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,
    那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),
    故答案为(0,0).
    【点睛】
    此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    16、2
    【解析】
    试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
    ∵22=4,∴=2.
    考点:算术平方根.
    17、1
    【解析】
    由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.
    【详解】
    解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.
    故答案为1.
    【点睛】
    根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.

    三、解答题(共7小题,满分69分)
    18、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣
    【解析】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;
    ②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
    (1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).
    (3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.
    【详解】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=45°,
    ∵∠DBC=30°,
    ∴∠ABD=∠ABC﹣∠DBC=15°,
    在△ABD和△ABD′中,
    ∴△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABD′+∠ABC=60°,
    ∵BD=BD′,BD=BC,
    ∴BD′=BC,
    ∴△D′BC是等边三角形,
    ②∵△D′BC是等边三角形,
    ∴D′B=D′C,∠BD′C=60°,
    在△AD′B和△AD′C中,
    ∴△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (1)∵∠DBC<∠ABC,
    ∴60°<α≤110°,
    如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=α,
    ∴∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B
    ∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),
    ∵α+β=110°,
    ∴∠D′BC=60°,
    由(1)②可知,△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (3)第①情况:当60°<α<110°时,如图3﹣1,

    由(1)知,∠ADB=30°,
    作AE⊥BD,
    在Rt△ADE中,∠ADB=30°,AD=1,
    ∴DE=,
    ∵△BCD'是等边三角形,
    ∴BD'=BC=7,
    ∴BD=BD'=7,
    ∴BE=BD﹣DE=7﹣;
    第②情况:当0°<α<60°时,
    如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.

    同理可得:∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),
    ∴D′B=D′C,∠BD′C=60°.
    同(1)②可证△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∵∠AD′B+∠AD′C+∠BD′C=360°,
    ∴∠ADB=∠AD′B=150°,
    在Rt△ADE中,∠ADE=30°,AD=1,
    ∴DE=,
    ∴BE=BD+DE=7+,
    故答案为:7+或7﹣.
    【点睛】
    此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    19、(1)5.3(2)见解析(3)2.5或6.9
    【解析】
    (1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数.
    【详解】
    (1)根据题意取点、画图、测量的x=6时,y=5.3
    故答案为5.3
    (2)根据数据表格画图象得

    (3)当DE=2OE时,问题可以转化为折线y= 与(2)中图象的交点
    经测量得x=2.5或6.9时DE=2OE.
    故答案为2.5或6.9
    【点睛】
    动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.
    20、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
    【解析】
    分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
    (2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
    详解:(1)∵tan∠AOH==
    ∴AH=OH=4
    ∴A(-4,3),代入,得
    k=-4×3=-12
    ∴反比例函数为

    ∴m=6
    ∴B(6,-2)

    ∴=,b=1
    ∴一次函数为
    (2)
    △AHO的周长为:3+4+5=12
    点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
    21、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )
    【解析】
    (1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;
    (2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.
    【详解】
    (1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1
    解得a=1,∴解析式为y= x2-2x-3,
    (2)如图所示,对称轴为x=1,
    过D1作D1H⊥x轴,
    ∵△CPD为等腰直角三角形,
    ∴△OPC≌△HD1P,
    ∴PH=OC=3,HD1=OP=1,∴D1(4,-1)
    过点D2F⊥y轴,同理△OPC≌△FCD2,
    ∴FD2=3,CF=1,故D2(3,- 4)
    由图可知CD1与PD2交于D3,
    此时PD3⊥CD3,且PD3=CD3,
    PC=,∴PD3=CD3=
    故D3 ( 2,- 2 )
    ∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.

    【点睛】
    此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.
    22、电视塔高为米,点的铅直高度为(米).
    【解析】
    过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
    【详解】
    过点P作PF⊥OC,垂足为F.
    在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
    过点P作PB⊥OA,垂足为B.
    由i=1:2,设PB=x,则AB=2x.
    ∴PF=OB=100+2x,CF=100﹣x.
    在Rt△PCF中,由∠CPF=45°,
    ∴PF=CF,即100+2x=100﹣x,
    ∴x= ,即PB=米.

    【点睛】
    本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
    23、这种测量方法可行,旗杆的高为21.1米.
    【解析】
    分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.
    详解:这种测量方法可行.
    理由如下:
    设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).

    所以△AGF∽△EHF.
    因为FD=1.1,GF=27+3=30,HF=3,
    所以EH=3.1﹣1.1=2,AG=x﹣1.1.
    由△AGF∽△EHF,
    得,
    即,
    所以x﹣1.1=20,
    解得x=21.1(米)
    答:旗杆的高为21.1米.
    点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.
    24、(1)200;(2)答案见解析;(3).
    【解析】
    (1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
    (2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.
    【详解】
    解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
    故答案为:200;
    (2)C组人数:200-40-70-30=60(名)
    B组百分比:70÷200×100%=35%
    如图

    (3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;
    画树状图得:

    ∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,
    ∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:.
    【点睛】
    此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    2024年江苏省盐城市射阳县中考复习数学模拟预测题(原卷版+解析版): 这是一份2024年江苏省盐城市射阳县中考复习数学模拟预测题(原卷版+解析版),文件包含2024年江苏省盐城市射阳县中考复习数学模拟预测题原卷版docx、2024年江苏省盐城市射阳县中考复习数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    江苏省重点达标名校2022年中考数学模拟预测试卷含解析: 这是一份江苏省重点达标名校2022年中考数学模拟预测试卷含解析,共18页。试卷主要包含了对于下列调查,估计﹣1的值在,﹣18的倒数是等内容,欢迎下载使用。

    江苏省盐城市盐都区重点达标名校2022年中考数学模拟预测题含解析: 这是一份江苏省盐城市盐都区重点达标名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了有下列四个命题,如图所示的正方体的展开图是,计算÷9的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map