|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届江苏省扬州市教育科研究院重点达标名校中考押题数学预测卷含解析
    立即下载
    加入资料篮
    2022届江苏省扬州市教育科研究院重点达标名校中考押题数学预测卷含解析01
    2022届江苏省扬州市教育科研究院重点达标名校中考押题数学预测卷含解析02
    2022届江苏省扬州市教育科研究院重点达标名校中考押题数学预测卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省扬州市教育科研究院重点达标名校中考押题数学预测卷含解析

    展开
    这是一份2022届江苏省扬州市教育科研究院重点达标名校中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算结果等于0的是,下列各数中,为无理数的是,下面的几何体中,主视图为圆的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列运算正确的是(   )
    A.a2·a3﹦a6  B.a3+ a3﹦a6  C.|-a2|﹦a2    D.(-a2)3﹦a6
    2.若分式 有意义,则x的取值范围是
    A.x>1 B.x<1 C.x≠1 D.x≠0
    3.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )

    A.1 B.2 C.3 D.4
    4.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )

    A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD
    5.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为(  )

    A. B. C. D.
    6.下列计算结果等于0的是( )
    A. B. C. D.
    7.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )

    A.12 B.16 C.20 D.24
    8.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为

    A.12 B.9 C.6 D.4
    9.下列各数中,为无理数的是(  )
    A. B. C. D.
    10.下面的几何体中,主视图为圆的是( )
    A. B. C. D.
    11.下列运算中正确的是( )
    A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a3
    12.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是(  )

    A.∠ACB=90° B.OE=BE C.BD=BC D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.
    14.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.

    15.方程的根是__________.
    16.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____

    17.若x2+kx+81是完全平方式,则k的值应是________.
    18.因式分解:-2x2y+8xy-6y=__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
    请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

    20.(6分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.

    (1)求出m的值并画出这条抛物线;
    (2)求它与x轴的交点和抛物线顶点的坐标;
    (3)x取什么值时,抛物线在x轴上方?
    (4)x取什么值时,y的值随x值的增大而减小?
    21.(6分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.
    小明和小刚都在本周日上午去游玩的概率为________;
    求他们三人在同一个半天去游玩的概率.
    22.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
    (1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
    (2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?

    23.(8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.

    24.(10分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).
    (1)求抛物线L的顶点坐标和A点坐标.
    (2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?
    (3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.
    25.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为   件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
    26.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
    27.(12分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
    运动项目

    频数(人数)

    羽毛球

    30

    篮球



    乒乓球

    36

    排球



    足球

    12


    请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
    【详解】
    a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
    【点睛】
    本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
    2、C
    【解析】
    分式分母不为0,所以,解得.
    故选:C.
    3、B
    【解析】
    根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.
    【详解】
    解:∵反比例函数的图象位于一三象限,
    ∴m>0
    故①错误;
    当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;
    将A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,
    ∵m>0
    ∴h<k
    故③正确;
    将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,
    故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上
    故④正确,
    故选:B.
    【点睛】
    本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.
    4、D
    【解析】
    解:∵∠ADC=∠ADB,∠ACD=∠DAB,
    ∴△ADC∽△BDA,故A选项正确;
    ∵AD=DE,
    ∴ ,
    ∴∠DAE=∠B,
    ∴△ADC∽△BDA,∴故B选项正确;
    ∵AD2=BD•CD,
    ∴AD:BD=CD:AD,
    ∴△ADC∽△BDA,故C选项正确;
    ∵CD•AB=AC•BD,
    ∴CD:AC=BD:AB,
    但∠ACD=∠ABD不是对应夹角,故D选项错误,
    故选:D.
    考点:1.圆周角定理2.相似三角形的判定
    5、D
    【解析】
    延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
    【详解】
    解:延长BO交⊙O于D,连接CD,

    则∠BCD=90°,∠D=∠A=60°,
    ∴∠CBD=30°,
    ∵BD=2R,
    ∴DC=R,
    ∴BC=R,
    故选D.
    【点睛】
    此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
    6、A
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    解:A、原式=0,符合题意;
    B、原式=-1+(-1)=-2,不符合题意;
    C、原式=-1,不符合题意;
    D、原式=-1,不符合题意,
    故选:A.
    【点睛】
    本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.
    7、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    【点睛】
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    8、B
    【解析】
    ∵点,是中点
    ∴点坐标
    ∵在双曲线上,代入可得

    ∵点在直角边上,而直线边与轴垂直
    ∴点的横坐标为-6
    又∵点在双曲线
    ∴点坐标为

    从而,故选B
    9、D
    【解析】
    A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,
    故选D.
    10、C
    【解析】
    试题解析:A、的主视图是矩形,故A不符合题意;
    B、的主视图是正方形,故B不符合题意;
    C、的主视图是圆,故C符合题意;
    D、的主视图是三角形,故D不符合题意;
    故选C.
    考点:简单几何体的三视图.
    11、A
    【解析】
    根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
    【详解】
    解:A、x2÷x8=x-6,故该选项正确;
    B、a•a2=a3,故该选项错误;
    C、(a2)3=a6,故该选项错误;
    D、(3a)3=27a3,故该选项错误;
    故选A.
    【点睛】
    此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.
    12、B
    【解析】
    根据垂径定理及圆周角定理进行解答即可.
    【详解】
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,故A正确;
    ∵点E不一定是OB的中点,
    ∴OE与BE的关系不能确定,故B错误;
    ∵AB⊥CD,AB是⊙O的直径,
    ∴,
    ∴BD=BC,故C正确;
    ∴,故D正确.
    故选B.
    【点睛】
    本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2.35×1
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将235000000用科学记数法表示为:2.35×1.
    故答案为:2.35×1.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    14、.
    【解析】
    探究规律,利用规律即可解决问题.
    【详解】
    ∵∠MON=45°,
    ∴△C2B2C2为等腰直角三角形,
    ∴C2B2=B2C2=A2B2.
    ∵正方形A2B2C2A2的边长为2,
    ∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,
    同理,可得出:OAn=An-2An=An-2An-2=,
    ∴OA2028=A2028A2027=,
    ∴A2028M=2-.
    故答案为2-.
    【点睛】
    本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.
    15、1.
    【解析】
    把无理方程转化为整式方程即可解决问题.
    【详解】
    两边平方得到:2x﹣1=1,解得:x=1,经检验:x=1是原方程的解.
    故答案为:1.
    【点睛】
    本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.
    16、.
    【解析】
    解:令AE=4x,BE=3x,
    ∴AB=7x.
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=7x,CD∥AB,
    ∴△BEF∽△DCF.
    ∴,
    ∴DF=
    【点睛】
    本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
    17、±1
    【解析】
    试题分析:利用完全平方公式的结构特征判断即可确定出k的值.
    解:∵x2+kx+81是完全平方式,
    ∴k=±1.
    故答案为±1.
    考点:完全平方式.
    18、-2 y (x-1)( x-3)
    【解析】
    分析:提取公因式法和十字相乘法相结合因式分解即可.
    详解:原式

    故答案为
    点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    【解析】
    分析:(1)应用待定系数法分段求函数解析式;
    (2)观察图象可得;
    (3)代入临界值y=10即可.
    详解:(1)设线段AB解析式为y=k1x+b(k≠0)
    ∵线段AB过点(0,10),(2,14)
    代入得
    解得
    ∴AB解析式为:y=2x+10(0≤x<5)
    ∵B在线段AB上当x=5时,y=20
    ∴B坐标为(5,20)
    ∴线段BC的解析式为:y=20(5≤x<10)
    设双曲线CD解析式为:y=(k2≠0)
    ∵C(10,20)
    ∴k2=200
    ∴双曲线CD解析式为:y=(10≤x≤24)
    ∴y关于x的函数解析式为:
    (2)由(1)恒温系统设定恒温为20°C
    (3)把y=10代入y=中,解得,x=20
    ∴20-10=10
    答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
    20、(1);(2),;(1);(2)
    【解析】
    试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
    ∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
    列表得:

    X

    ﹣1


    0


    1


    2


    1


    y


    0


    1


    2


    1


    0

    图象如下.

    (2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
    ∴抛物线与x轴的交点为(﹣1,0),(1,0).
    ∵y=﹣x2+2x+1=﹣(x﹣1)2+2
    ∴抛物线顶点坐标为(1,2).
    (1)由图象可知:
    当﹣1<x<1时,抛物线在x轴上方.
    (2)由图象可知:
    当x>1时,y的值随x值的增大而减小
    考点: 二次函数的运用
    21、(1);(2)
    【解析】
    (1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;
    (2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.
    【详解】
    解:(1)根据题意,画树状图如图:

    由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;
    (2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,
    ∴他们三人在同一个半天去游玩的概率为=.
    答:他们三人在同一个半天去游玩的概率是.
    【点睛】
    本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
    22、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
    【解析】
    试题分析:
    (1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
    (2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
    试题解析:
    (1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
    (2)列表法:

    A
    B
    C
    D
    A

    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)

    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)

    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)

    由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
    ∴P2=,
    ∵P1=,P2=,P1≠P2
    ∴淇淇与嘉嘉抽到勾股数的可能性不一样.
    23、(1)证明见解析;(2)BC=,AD=.
    【解析】
    分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
    (2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
    详解:(1)如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵BE平分∠ABC,
    ∴∠OBE=∠CBE,
    ∴∠OEB=∠CBE,
    ∴OE∥BC,
    又∵∠C=90°,
    ∴∠AEO=90°,即OE⊥AC,
    ∴AC为⊙O的切线;
    (2)∵ED⊥BE,
    ∴∠BED=∠C=90°,
    又∵∠DBE=∠EBC,
    ∴△BDE∽△BEC,
    ∴,即,
    ∴BC=;
    ∵∠AEO=∠C=90°,∠A=∠A,
    ∴△AOE∽△ABC,
    ∴,即,
    解得:AD=.
    点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
    24、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .
    【解析】
    (1)将点B和点C代入求出抛物线L即可求解.
    (2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.
    (3)将使得△PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.
    【详解】
    (1)将点B(-3,0),C(0,3)代入抛物线得:
    ,解得,则抛物线.
    抛物线与x轴交于点A,
    ,,A (-1,0),
    抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).
    (2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)
    抛物线L1的顶点与抛物线L的顶点关于原点对称,
    对称顶点坐标为(2,1),
    即将抛物线向右移4个单位,向上移2个单位.
    (3) 使得△PAC为等腰直角三角形,作出所有点P的可能性.

    是等腰直角三角形
    ,
    ,
    ,
    ,
    ,
    求得.,
    同理得,,,
    由题意知抛物线并将点代入得:.
    【点睛】
    本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.
    25、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.
    【解析】
    分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
    (2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.
    详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),
    故答案为180;
    (2)由题意得:
    y=(x﹣40)[200﹣10(x﹣50)]
    =﹣10x2+1100x﹣28000
    =﹣10(x﹣55)2+2250
    ∴每件销售价为55元时,获得最大利润;最大利润为2250元.
    点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.
    26、100或200
    【解析】
    试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
    试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
    列方程得,
    (8+×4)=4800,
    x2﹣300x+20000=0,
    解得x1=200,x2=100;
    要使百姓得到实惠,只能取x=200,
    答:每台冰箱应降价200元.
    考点:一元二次方程的应用.
    27、 (1)24,1;(2) 54;(3)360.
    【解析】
    (1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;
    (2)利用360°乘以对应的百分比即可求得;
    (3)求得全校总人数,然后利用总人数乘以对应的百分比求解.
    【详解】
    (1)抽取的人数是36÷30%=120(人),
    则a=120×20%=24,
    b=120﹣30﹣24﹣36﹣12=1.
    故答案是:24,1;
    (2)“排球”所在的扇形的圆心角为360°×=54°,
    故答案是:54;
    (3)全校总人数是120÷10%=1200(人),
    则选择参加乒乓球运动的人数是1200×30%=360(人).

    相关试卷

    江苏省无锡市重点达标名校2022年中考押题数学预测卷含解析: 这是一份江苏省无锡市重点达标名校2022年中考押题数学预测卷含解析,共24页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2022年四川省达州地区重点达标名校中考押题数学预测卷含解析: 这是一份2022年四川省达州地区重点达标名校中考押题数学预测卷含解析,共18页。试卷主要包含了将抛物线y=﹣等内容,欢迎下载使用。

    2022年江苏省扬州市教院重点名校中考押题数学预测卷含解析: 这是一份2022年江苏省扬州市教院重点名校中考押题数学预测卷含解析,共24页。试卷主要包含了如图,如图,反比例函数等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map