2022届江西省南昌市第三中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.已知代数式x+2y的值是5,则代数式2x+4y+1的值是( )
A.6 B.7 C.11 D.12
2.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为( )
A.()6 B.()7 C.()6 D.()7
3.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
A. B. C. D.
4.若,代数式的值是
A.0 B. C.2 D.
5.已知是二元一次方程组的解,则m+3n的值是( )
A.4 B.6 C.7 D.8
6.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
7.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
其中正确的结论个数为( )
A.4 B.3 C.2 D.1
8.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )
A.6.7×106 B.6.7×10﹣6 C.6.7×105 D.0.67×107
9.若,,则的值是( )
A.2 B.﹣2 C.4 D.﹣4
10.把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
A.ax(x2﹣2x) B.ax2(x﹣2)
C.ax(x+1)(x﹣1) D.ax(x﹣1)2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.
12.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
13.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.
14.对于一元二次方程,根的判别式中的表示的数是__________.
15.若a﹣3有平方根,则实数a的取值范围是_____.
16.在中,若,则的度数是______.
三、解答题(共8题,共72分)
17.(8分)(1)解方程:.
(2)解不等式组:
18.(8分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
19.(8分)如图,已知,,.求证:.
20.(8分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?
21.(8分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.
(1)求这条抛物线的表达式和顶点P的坐标;
(2)点E在抛物线的对称轴上,且,求点E的坐标;
(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.
22.(10分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).
请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是 人,并将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有 人达标;
(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
23.(12分)先化简,再求值:,其中a为不等式组的整数解.
24.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
【详解】
∵x+2y=5,
∴2x+4y=10,
则2x+4y+1=10+1=1.
故选C.
【点睛】
此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
2、A
【解析】
试题分析:如图所示.
∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.当n=9时,S9=()9﹣2=()6,故选A.
考点:勾股定理.
3、D
【解析】
A选项:
∠1+∠2=360°-90°×2=180°;
B选项:
∵∠2+∠3=90°,∠3+∠4=90°,
∴∠2=∠4,
∵∠1+∠4=180°,
∴∠1+∠2=180°;
C选项:
∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
∵∠1+∠EFC=180°,∴∠1+∠2=180°;
D选项:∠1和∠2不一定互补.
故选D.
点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
4、D
【解析】
由可得,整体代入到原式即可得出答案.
【详解】
解:,
,
则原式.
故选:D.
【点睛】
本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
5、D
【解析】
分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.
详解:根据题意,将代入,得:,
①+②,得:m+3n=8,
故选D.
点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.
6、D
【解析】
试题解析:A、∵4+10+8+6+2=30(人),
∴参加本次植树活动共有30人,结论A正确;
B、∵10>8>6>4>2,
∴每人植树量的众数是4棵,结论B正确;
C、∵共有30个数,第15、16个数为5,
∴每人植树量的中位数是5棵,结论C正确;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植树量的平均数约是4.73棵,结论D不正确.
故选D.
考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
7、B
【解析】
试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;
③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
综上所述,正确的结论有①③⑤,共3个,故选B.
考点:四边形综合题.
8、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:6 700 000=6.7×106,
故选:A
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、D
【解析】
因为,所以,因为,故选D.
10、D
【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
【详解】
原式=ax(x2﹣2x+1)=ax(x﹣1)2,
故选D.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
∵当x=a时,,∴P1的坐标为(a,),
当x=2a时,,∴P2的坐标为(2a,),
……
∴Rt△P1B1P2的面积为,
Rt△P2B2P3的面积为,
Rt△P3B3P4的面积为,
……
∴Rt△Pn-1Bn-1Pn的面积为.
故答案为:
12、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
13、∠BAD=90° (不唯一)
【解析】
根据正方形的判定定理添加条件即可.
【详解】
解:∵平行四边形 ABCD的对角线AC与BD相交于点O,且AC⊥BD,
∴四边形ABCD是菱形,
当∠BAD=90°时,四边形ABCD为正方形.
故答案为:∠BAD=90°.
【点睛】
本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.
14、-5
【解析】
分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.
【详解】
解:表示一元二次方程的一次项系数.
【点睛】
此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.
15、a≥1.
【解析】
根据平方根的定义列出不等式计算即可.
【详解】
根据题意,得
解得:
故答案为
【点睛】
考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.
16、
【解析】
先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.
【详解】
在中,,
,,
,,
,
故答案为:.
【点睛】
本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.
三、解答题(共8题,共72分)
17、(1)无解;(1)﹣1<x≤1.
【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
(1)去分母得:1﹣x+1=﹣3x+6,
解得:x=1,
经检验x=1是增根,分式方程无解;
(1),
由①得:x>﹣1,
由②得:x≤1,
则不等式组的解集为﹣1<x≤1.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
18、(1)证明见解析;(2)25°.
【解析】
试题分析: (1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.
试题解析:(1)∵∠AOC=∠BOD
∴∠AOC -∠COD=∠BOD-∠COD
即∠AOD=∠BOC
∵四边形ABCD是矩形
∴∠A=∠B=90°,AD=BC
∴
∴AO=OB
(2)解:∵AB是的直径,PA与相切于点A,
∴PA⊥AB,
∴∠A=90°.
又∵∠OPA=40°,
∴∠AOP=50°,
∵OB=OC,
∴∠B=∠OCB.
又∵∠AOP=∠B+∠OCB,
∴.
19、证明见解析.
【解析】
根据等式的基本性质可得,然后利用SAS即可证出,从而证出结论.
【详解】
证明:,
,
即,
在和中,
,
,
.
【点睛】
此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.
20、(1)50(2)36%(3)160
【解析】
(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.
【详解】
(1)该校对名学生进行了抽样调查.
本次调查中,最喜欢篮球活动的有人,
,
∴最喜欢篮球活动的人数占被调查人数的.
(3),
人,
人.
答:估计全校学生中最喜欢跳绳活动的人数约为人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.
21、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.
【解析】
(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;
(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;
(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.
【详解】
解:(1)抛物线解析式为,
即,
,
顶点P的坐标为;
(2)抛物线的对称轴为直线,
设,
,
,解得,
E点坐标为;
(3)直线交x轴于F,作MN⊥直线x=2于H,如图,
,
而,
,
设,则,
在中,,
,
整理得,解得(舍去),,
Q点的坐标为.
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.
22、(1)120,补图见解析;(2)96;(3)960人.
【解析】
(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;
(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;
(3)求出达标占的百分比,乘以1200即可得到结果.
【详解】
(1)根据题意得:24÷20%=120(人),
则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为×100%=30%,
补全统计图,如图所示:
(2)根据题意得:36+60=96(人),
则达标的人数为96人;
(3)根据题意得:×1200=960(人),
则全校达标的学生有960人.
故答案为(1)120;(2)96人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、,1
【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.
【详解】
解:原式=[﹣]
=
=,
∵不等式组的解为<a<5,其整数解是2,3,4,
a不能等于0,2,4,
∴a=3,
当a=3时,原式==1.
【点睛】
本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
24、(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16;当12<t≤24时,w=﹣t2+42t+88;②此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
【解析】
分析:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;
(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;
②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.
详解:(1)设8<t≤24时,P=kt+b,
将A(8,10)、B(24,26)代入,得:
,
解得:,
∴P=t+2;
(2)①当0<t≤8时,w=(2t+8)×=240;
当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;
当12<t≤24时,w=(-t+44)(t+2)=-t2+42t+88;
②当8<t≤12时,w=2t2+12t+16=2(t+3)2-2,
∴8<t≤12时,w随t的增大而增大,
当2(t+3)2-2=336时,解题t=10或t=-16(舍),
当t=12时,w取得最大值,最大值为448,
此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;
当12<t≤24时,w=-t2+42t+88=-(t-21)2+529,
当t=12时,w取得最小值448,
由-(t-21)2+529=513得t=17或t=25,
∴当12<t≤17时,448<w≤513,
此时P=t+2的最小值为14,最大值为19;
综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.
江西省南昌市第二中学2021-2022学年中考数学模拟预测题含解析: 这是一份江西省南昌市第二中学2021-2022学年中考数学模拟预测题含解析,共25页。试卷主要包含了下列计算正确的是,下列图形不是正方体展开图的是等内容,欢迎下载使用。
2022年江西省南昌市新建区重点达标名校中考数学模拟预测试卷含解析: 这是一份2022年江西省南昌市新建区重点达标名校中考数学模拟预测试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列等式正确的是等内容,欢迎下载使用。
2022年江西省赣州大余县联考中考数学模拟预测题含解析: 这是一份2022年江西省赣州大余县联考中考数学模拟预测题含解析,共19页。试卷主要包含了一、单选题,下列事件中,必然事件是等内容,欢迎下载使用。