2022届江苏省扬州市江都区八校中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.二次函数的图像如图所示,下列结论正确是( )
A. B. C. D.有两个不相等的实数根
2.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A. B. C. D.
3.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:
①小明家距学校4千米;
②小明上学所用的时间为12分钟;
③小明上坡的速度是0.5千米/分钟;
④小明放学回家所用时间为15分钟.
其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
4.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
5.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( )
A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×107
6.下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
7.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )
A.2 B.3 C.4 D.5
8.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为( )
A. B. C. D.
9.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b
10.下列四个图形中,是中心对称图形的是( )
A. B. C. D.
11.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
A. B. C. D.
12.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算2x3·x2的结果是_______.
14.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.
15.若关于x的方程有增根,则m的值是 ▲
16.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)
17.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.
18.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1= .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
20.(6分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.
21.(6分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
(1)计算:若十字框的中间数为17,则a+b+c+d=______.
(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
22.(8分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.
23.(8分)解不等式组: .
24.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
25.(10分)(1)计算:
(2)化简:
26.(12分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
(1)求m的值及一次函数解析式;
(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.
27.(12分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得 3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.
【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;
当x=-1时, y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
∵抛物线的顶点为(1,3),
∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,
故选C.
【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.
2、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
3、C
【解析】
从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.
【详解】
解:①小明家距学校4千米,正确;
②小明上学所用的时间为12分钟,正确;
③小明上坡的速度是千米/分钟,错误;
④小明放学回家所用时间为3+2+10=15分钟,正确;
故选:C.
【点睛】
本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
4、A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.
故选A.
考点:轴对称图形
5、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将4670000用科学记数法表示为4.67×106,
故选B.
【点睛】
本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.
6、A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
7、C
【解析】
如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.
【详解】
如图,连接BD、CD
在和中,
同理可得:
,即
为⊙O的直径
故选:C.
【点睛】
本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.
8、D
【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
9、D
【解析】
试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;
B.如图所示:﹣3<a<﹣2,故此选项错误;
C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;
D.由选项C可得,此选项正确.
故选D.
考点:实数与数轴
10、D
【解析】
试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.
解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项正确;
故选D.
考点:中心对称图形.
11、A
【解析】
圆柱体的底面积为:π×()2,
∴矿石的体积为:π×()2h= .
故答案为.
12、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.
故答案为:2x5
14、1
【解析】
【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.
【详解】如图,过点A作AD⊥x轴,垂足为D,
∵tan∠AOC==,∴设点A的坐标为(1a,a),
∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
∴a=1a﹣2,得a=1,
∴1=,得k=1,
故答案为:1.
【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、1.
【解析】
方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使
最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:
方程两边都乘以(x-2)得,2-x-m=2(x-2).
∵分式方程有增根,∴x-2=1,解得x=2.
∴2-2-m=2(2-2),解得m=1.
16、
【解析】
抛物线的对称轴为:x=1,
∴当x>1时,y随x的增大而增大.
∴若x1>x2>1 时,y1>y2 .
故答案为>
17、0
【解析】
根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.
故答案为0
点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.
18、107°
【解析】
过C作d∥a, 得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.
【详解】
过C作d∥a, ∴a∥b, ∴a∥b∥d,
∵四边形ABCD是正方形,∴∠DCB=90°, ∵∠2=73°,∴∠6=90°-∠2=17°,
∵b∥d, ∴∠3=∠6=17°, ∴∠4=90°-∠3=73°, ∴∠5=180°-∠4=107°,
∵a∥d, ∴∠1=∠5=107°,故答案为107°.
【点睛】
本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BE∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=CF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
【点睛】
本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
20、见解析
【解析】
试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.
试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.
考点:平行线的性质;全等三角形的判定及性质.
21、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
【解析】
(1)直接相加即得到答案;
(2)根据(1)猜想a+b+c+d=4x;
(3)用x表示a、b、c、d,相加后即等于4x;
(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
【详解】
(1)5+15+19+29=68,
故答案为68;
(2)根据(1)猜想a+b+c+d=4x,
答案为:4倍;
(3)a=x-12,b=x-2,c=x+2,d=x+12,
∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
∴猜想正确;
(4)M=a+b+c+d+x=4x+x=5x,
若M=5x=1,解得:x=404,
但整个数表所有的数都为奇数,故不成立,
∴M的值不能等于1.
【点睛】
本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
22、见解析
【解析】
根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
【详解】
∵BF 平分∠ABC,
∴∠ABF=∠CBF,
∵∠BAC=90°,AD⊥BC,
∴∠ABF+∠AFB=∠CBF+∠BED=90°,
∴∠AFB=∠BED,
∵∠AEF=∠BED,
∴∠AFE=∠AEF,
∴AE=AF.
【点睛】
本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
23、x<2.
【解析】
试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.
试题解析:,
由①得:x<3,
由②得:x<2,
∴不等式组的解集为:x<2.
24、(1)10%;(1)会跌破10000元/m1.
【解析】
(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
【详解】
(1)设11、11两月平均每月降价的百分率是x,
则11月份的成交价是:14000(1-x),
11月份的成交价是:14000(1-x)1,
∴14000(1-x)1=11340,
∴(1-x)1=0.81,
∴x1=0.1=10%,x1=1.9(不合题意,舍去)
答:11、11两月平均每月降价的百分率是10%;
(1)会跌破10000元/m1.
如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
11340(1-x)1=11340×0.81=9184.5<10000,
由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
【点睛】
此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
25、(1);(2)-1;
【解析】
(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;
(2)根据分式的除法和减法可以解答本题.
【详解】
(1)
=
=2-.
(2)
=
=
=
=
=-1
【点睛】
本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.
26、(1)m=2;y=x+;(2)P点坐标是(﹣,).
【解析】
(1)利用待定系数法求一次函数和反比例函数的解析式;
(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.
【详解】
解:(1)∵反比例函数的图象过点
∴
∵点B(﹣1,m)也在该反比例函数的图象上,
∴﹣1•m=﹣2,
∴m=2;
设一次函数的解析式为y=kx+b,
由y=kx+b的图象过点A,B(﹣1,2),则
解得:
∴一次函数的解析式为
(2)连接PC、PD,如图,设
∵△PCA和△PDB面积相等,
∴
解得:
∴P点坐标是
【点睛】
本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.
27、(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元.
【解析】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.
【详解】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1﹣x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.
(2)根据题意得:[0.5×80(1+a%)﹣30]×10(1+2a%)=30000,
整理得:a2+75a﹣2500=0,
解得:a1=25,a2=﹣1(不合题意,舍去),
∴80(1+a%)=80×(1+25%)=1.
答:乙网店在“双十一”购物活动这天的网上标价为1元.
【点睛】
本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
江苏省江都区六校2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省江都区六校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,tan60°的值是等内容,欢迎下载使用。
2022年江苏省扬州市江都区国际校中考三模数学试题含解析: 这是一份2022年江苏省扬州市江都区国际校中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列4个数等内容,欢迎下载使用。
2022年江苏省扬州市江都区等六校中考联考数学试题含解析: 这是一份2022年江苏省扬州市江都区等六校中考联考数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。