2022届内蒙古包头市中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
2.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为( )
A.5cm B.5cm或3cm C.7cm或3cm D.7cm
3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m<﹣1 B.m<1 C.m>﹣1 D.m>1
4.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为( )
A.13.75×106 B.13.75×105 C.1.375×108 D.1.375×109
5.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是( )
A. B. C. D.
6.等式成立的x的取值范围在数轴上可表示为( )
A. B. C. D.
7.下列二次根式,最简二次根式是( )
A. B. C. D.
8.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
A.2 B.-2 C.±2 D.-
9.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
得分(分)
60
70
80
90
100
人数(人)
7
12
10
8
3
则得分的众数和中位数分别为( )
A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
10.不等式组 中两个不等式的解集,在数轴上表示正确的是
A. B.
C. D.
11.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
12.计算 的结果是( )
A.a2 B.-a2 C.a4 D.-a4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC
其中正确的是_____(填序号)
14.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
15.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.
16.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
x
…
﹣3
﹣2
0
1
3
5
…
y
…
7
0
﹣8
﹣9
﹣5
7
…
则二次函数y=ax2+bx+c在x=2时,y=______.
17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
18.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
(1)如图1,求证:PQ=PE;
(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
(3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.
20.(6分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.
21.(6分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
22.(8分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:
①将△ABC向左平移4个单位,得到△A1B1C1;
②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.
23.(8分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
24.(10分)计算:-2-2 - + 0
25.(10分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.求证:∠BAC=∠AED;在边AC取一点F,如果∠AFE=∠D,求证:.
26.(12分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:
一次复印页数(页)
5
10
20
30
…
甲复印店收费(元)
0.5
2
…
乙复印店收费(元)
0.6
2.4
…
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
27.(12分)计算:(-1)-1-++|1-3|
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
A、不是轴对称图形,故A不符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、是轴对称图形,故D符合题意.
故选D.
【点睛】
本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、B
【解析】
(1)如图1,当点C在点A和点B之间时,
∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
∴MB=AB=4cm,BN=BC=1cm,
∴MN=MB-BN=3cm;
(2)如图2,当点C在点B的右侧时,
∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
∴MB=AB=4cm,BN=BC=1cm,
∴MN=MB+BN=5cm.
综上所述,线段MN的长度为5cm或3cm.
故选B.
点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.
3、B
【解析】
根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.
【详解】
∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
∴△=(-2)2-4m=4-4m>0,
解得:m<1.
故选B.
【点睛】
本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.
4、D
【解析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
13.75亿=1.375×109.
故答案选D.
【点睛】
本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.
5、A
【解析】
利用平行线的判定方法判断即可得到结果.
【详解】
∵∠1=∠2,
∴AB∥CD,选项A符合题意;
∵∠3=∠4,
∴AD∥BC,选项B不合题意;
∵∠D=∠5,
∴AD∥BC,选项C不合题意;
∵∠B+∠BAD=180°,
∴AD∥BC,选项D不合题意,
故选A.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
6、B
【解析】
根据二次根式有意义的条件即可求出的范围.
【详解】
由题意可知: ,
解得:,
故选:.
【点睛】
考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
7、C
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含开的尽的因数,故A不符合题意;
B、被开方数含分母,故B不符合题意;
C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意.
故选C.
【点睛】
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
8、B
【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
【详解】
由题意得:m2-3=1,且m+1<0,
解得:m=-2,
故选:B.
【点睛】
此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
9、C
【解析】
解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
故选C.
【点睛】
本题考查数据分析.
10、B
【解析】
由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B.
11、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
12、D
【解析】
直接利用同底数幂的乘法运算法则计算得出答案.
【详解】
解:,
故选D.
【点睛】
此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、①②④
【解析】
由正方形的性质和相似三角形的判定与性质,即可得出结论.
【详解】
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PH•PC,故④正确;
故答案是:①②④.
【点睛】
本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
14、2或-1
【解析】
根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.
【详解】
若8是直角边,则该三角形的斜边的长为:,
∴内切圆的半径为:;
若8是斜边,则该三角形的另一条直角边的长为:,
∴内切圆的半径为:.
故答案为2或-1.
【点睛】
本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.
15、
【解析】
由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.
【详解】
设MN与OP交于点E,
∵点O、P的距离为4,
∴OP=4
∵折叠
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=
在Rt△ONE中,NE=
∴MN=ME-NE=2-
故答案为2-
【点睛】
本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.
16、﹣1
【解析】
试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
解:∵x=﹣3时,y=7;x=5时,y=7,
∴二次函数图象的对称轴为直线x=1,
∴x=0和x=2时的函数值相等,
∴x=2时,y=﹣1.
故答案为﹣1.
17、
【解析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC=AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC=.
故答案是:.
【点睛】
考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
18、
【解析】
根据直角三角形的中点性质结合勾股定理解答即可.
【详解】
解:,点F是AD的中点,
.
故答案为: .
【点睛】
此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析(2)30°(3) QM=
【解析】
试题分析:
(1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
(2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
(3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
试题解析:
(1)如下图1,连接OP,PB,∵CP切⊙O于P,
∴OP⊥CP于点P,
又∵BQ⊥CP于点Q,
∴OP∥BQ,
∴∠OPB=∠QBP,
∵OP=OB,
∴∠OPB=∠OBP,
∴∠QBP=∠OBP,
又∵PE⊥AB于点E,
∴PQ=PE;
(2)如下图2,连接,∵CP切⊙O于P,
∴
∴
∵PD⊥AB
∴
∴
∴
在Rt中,∠GAB=30°
∴设EF=x,则
在Rt中,tan∠BFE=3
∴
∴
∴
∴
∴在RtPEO中,
∴30°;
(3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
∴,
∴四边形POKQ为矩形,
∴QK=PO,OK//CQ,
∴30°,
∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
∴PE= PD= 3,
根据(2)得,在RtEPO中,,
∴,
∴OB=QK=PO=6,
∴在Rt中, ,
∴,
∴QB=9,
在△ABG中,AB为⊙O的直径,
∴AGB=90°,
∵BAG=30°,
∴BG=6,ABG=60°,
过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
∴QN=QB+BN=12,
∴在Rt△QGN中,QG=,
∵∠ABG=∠CBQ=60°,
∴BM是△BQG的角平分线,
∴QM:GM=QB:GB=9:6,
∴QM=.
点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
20、(1)见解析;(2)+
【解析】
(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;
(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.
【详解】
(1)直线AB是⊙O的切线,理由如下:
连接OA.
∵OC=BC,AC=OB,
∴OC=BC=AC=OA,
∴△ACO是等边三角形,
∴∠O=∠OCA=60°,
又∵∠B=∠CAB,
∴∠B=30°,
∴∠OAB=90°.
∴AB是⊙O的切线.
(2)作AE⊥CD于点E.
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=;
∵∠D=30°,
∴AD=2.
【点睛】
本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、(1)4元或6元;(2)九折.
【解析】
解:(1)设每千克核桃应降价x元.
根据题意,得(60﹣x﹣40)(100+×20)=2240,
化简,得 x2﹣10x+24=0,解得x1=4,x2=6.
答:每千克核桃应降价4元或6元.
(2)由(1)可知每千克核桃可降价4元或6元.
∵要尽可能让利于顾客,∴每千克核桃应降价6元.
此时,售价为:60﹣6=54(元),.
答:该店应按原售价的九折出售.
22、(1)①见解析;②见解析;(1)1π.
【解析】
(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;
②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;
(1)根据弧长公式计算.
【详解】
(1)①如图,△A1B1C1为所作;
②如图,△A1B1C1为所作;
(1)点C1在旋转过程中所经过的路径长=
【点睛】
本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.
23、(1)40;(2)72;(3)1.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去A景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:
扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=1,所以估计“最想去景点B“的学生人数为1人.
24、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.
【详解】
解:原式=
【点睛】
本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.
25、见解析
【解析】
(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;
(2)由△DAE∽△CBA,可得,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;
【详解】
证明(1)∵AD∥BC,
∴∠B=∠DAE,
∵AB·AD=BC·AE,
∴,
∴△CBA∽△DAE,
∴∠BAC=∠AED.
(2)由(1)得△DAE∽△CBA
∴∠D=∠C,,
∵∠AFE=∠D,
∴∠AFE=∠C,
∴EF∥BC,
∵AD∥BC,
∴EF∥AD,
∵∠BAC=∠AED,
∴DE∥AC,
∴四边形ADEF是平行四边形,
∴DE=AF,
∴.
【点睛】
本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
26、(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.
【解析】
(1)根据收费标准,列代数式求得即可;
(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;
(3)设y=y1-y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断.
【详解】
解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;
当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;
故答案为1,3;1.2,3.3;
(2)y1=0.1x(x≥0);
y2=;
(3)顾客在乙复印店复印花费少;
当x>70时,y1=0.1x,y2=0.09x+0.6,
设y=y1﹣y2,
∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,
设y=0.01x﹣0.6,
由0.01>0,则y随x的增大而增大,
当x=70时,y=0.1
∴x>70时,y>0.1,
∴y1>y2,
∴当x>70时,顾客在乙复印店复印花费少.
【点睛】
本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.
27、-1
【解析】
试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.
试题解析:原式=-1-=-1.
内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共28页。试卷主要包含了若等式,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
2022届内蒙古重点中学中考数学考试模拟冲刺卷含解析: 这是一份2022届内蒙古重点中学中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年内蒙古赤峰二中学中考数学考试模拟冲刺卷含解析,共27页。试卷主要包含了4的平方根是,下列调查中适宜采用抽样方式的是等内容,欢迎下载使用。