2022届江西省中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示的正方体的展开图是( )
A. B. C. D.
2.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
3.有一个数用科学记数法表示为5.2×105,则这个数是( )
A.520000 B. C.52000 D.5200000
4.学完分式运算后,老师出了一道题“计算:”.
小明的做法:原式;
小亮的做法:原式;
小芳的做法:原式.
其中正确的是( )
A.小明 B.小亮 C.小芳 D.没有正确的
5.下列图形中,是中心对称但不是轴对称图形的为( )
A. B.
C. D.
6.4的平方根是( )
A.2 B.±2 C.8 D.±8
7.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A.56° B.62° C.68° D.78°
8.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于( )
A.π B.2π C.3π D.4π
9.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
10.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )
A.2.8×105 B.2.8×106 C.28×105 D.0.28×107
11.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是( )
A. B.
C. D.
12.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
A.平均数和中位数不变 B.平均数增加,中位数不变
C.平均数不变,中位数增加 D.平均数和中位数都增大
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.
14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 .
15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.
16.正八边形的中心角为______度.
17.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)
18.已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
求证:AB=DC.
20.(6分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
21.(6分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
22.(8分)已知:如图,AB为⊙O的直径,C,D是⊙O直径AB异侧的两点,AC=DC,过点C与⊙O相切的直线CF交弦DB的延长线于点E.
(1)试判断直线DE与CF的位置关系,并说明理由;
(2)若∠A=30°,AB=4,求的长.
23.(8分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
(1)求证:PC∥BD;
(2)若⊙O的半径为2,∠ABP=60°,求CP的长;
(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.
24.(10分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
25.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
26.(12分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.
(1)求该一次函数表达式;
(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.
27.(12分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
2、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
3、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
5.2×105=520000,
故选A.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、C
【解析】
试题解析:
=
=
=
=
=1.
所以正确的应是小芳.
故选C.
5、C
【解析】
试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
考点:中心对称图形;轴对称图形.
6、B
【解析】
依据平方根的定义求解即可.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选B.
【点睛】
本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
7、C
【解析】
分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.
详解:∵点I是△ABC的内心,
∴∠BAC=2∠IAC、∠ACB=2∠ICA,
∵∠AIC=124°,
∴∠B=180°﹣(∠BAC+∠ACB)
=180°﹣2(∠IAC+∠ICA)
=180°﹣2(180°﹣∠AIC)
=68°,
又四边形ABCD内接于⊙O,
∴∠CDE=∠B=68°,
故选C.
点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.
8、B
【解析】
根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.
【详解】
解:∵∠ACB=30°,
∴∠AOB=60°,
∴的长==2π,
故选B.
【点睛】
此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.
9、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
10、B
【解析】
分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
详解:280万这个数用科学记数法可以表示为
故选B.
点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
11、A
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.
【详解】
如图,点E即为所求作的点.故选:A.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.
12、B
【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然
;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.
【点睛】
本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、120°
【解析】
设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.
【详解】
设扇形的半径为r,圆心角为n°.
由题意:,
∴r=4,
∴
∴n=120,
故答案为120°
【点睛】
本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.
14、1.
【解析】
试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.
考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.
15、(15﹣5)
【解析】
先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
【详解】
∵P为AB的黄金分割点(AP>PB),
∴AP=AB=×10=5﹣5,
∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.
故答案为(15﹣5).
【点睛】
本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.
16、45°
【解析】
运用正n边形的中心角的计算公式计算即可.
【详解】
解:由正n边形的中心角的计算公式可得其中心角为,
故答案为45°.
【点睛】
本题考查了正n边形中心角的计算.
17、π
【解析】
∵∠C=30°,
∴∠AOB=60°,
∴.即的长为.
18、14
【解析】
根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.
【详解】
解:如图,在菱形ABCD中,BD=2.
∵菱形的周长为10,BD=2,
∴AB=5,BO=3,
∴ AC=3.
∴面积
故答案为 14.
【点睛】
此题考查了菱形的性质及面积求法,难度不大.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、∵平分平分,
∴
在与中,
.
【解析】
分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.
解答:证明:∵AC平分∠BCD,BC平分∠ABC,
∴∠DBC=∠ABC,∠ACB=∠DCB,
∵∠ABC=∠DCB,
∴∠ACB=∠DBC,
∵在△ABC与△DCB中,
,
∴△ABC≌△DCB,
∴AB=DC.
20、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).
【解析】
试题分析:把点的坐标代入即可求得抛物线的解析式.
作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数.
延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标.
试题解析:(1)由题意,得
解得.
∴这条抛物线的表达式为.
(2)作BH⊥AC于点H,
∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0),
∴AC=,AB=,OC=3,BC=.
∵,即∠BAD=,
∴.
Rt△ BCH中,,BC=,∠BHC=90º,
∴.
又∵∠ACB是锐角,∴.
(3)延长CD交x轴于点G,
∵Rt△ AOC中,AO=1,AC=,
∴.
∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.
∴AG = CG.
∴.
∴AG=1.∴G点坐标是(4,0).
∵点C坐标是(0,3),∴.
∴ 解得,(舍).
∴点D坐标是
21、(1)a=0.3,b=4;(2)99人;(3)
【解析】
分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
(2)利用用样本估计总体的知识求解即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
详解:(1)a=1-0.15-0.35-0.20=0.3;
∵总人数为:3÷0.15=20(人),
∴b=20×0.20=4(人);
故答案为:0.3,4;
补全统计图得:
(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
(3)画树状图得:
∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
∴所选两人正好都是甲班学生的概率是:.
点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
22、 (1)见解析;(2).
【解析】
(1)先证明△OAC≌△ODC,得出∠1=∠2,则∠2=∠4,故OC∥DE,即可证得DE⊥CF;
(2)根据OA=OC得到∠2=∠3=30°,故∠COD=120°,再根据弧长公式计算即可.
【详解】
解:(1)DE⊥CF.
理由如下:
∵CF为切线,
∴OC⊥CF,
∵CA=CD,OA=OD,OC=OC,
∴△OAC≌△ODC,
∴∠1=∠2,
而∠A=∠4,
∴∠2=∠4,
∴OC∥DE,
∴DE⊥CF;
(2)∵OA=OC,
∴∠1=∠A=30°,
∴∠2=∠3=30°,
∴∠COD=120°,
∴.
【点睛】
本题考查了全等三角形的判定与性质与弧长的计算,解题的关键是熟练的掌握全等三角形的判定与性质与弧长的公式.
23、(1)证明见解析;(2)+;(3)的值不变,.
【解析】
(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
(3)证明△CBP∽△ABD,根据相似三角形的性质解答.
【详解】
(1)证明:∵△ABC是等腰直角三角形,且AC=BC,
∴∠ABC=45°,∠ACB=90°,
∴∠APC=∠ABC=45°,
∴AB为⊙O的直径,
∴∠APB=90°,
∵PD=PB,
∴∠PBD=∠D=45°,
∴∠APC=∠D=45°,
∴PC∥BD;
(2)作BH⊥CP,垂足为H,
∵⊙O的半径为2,∠ABP=60°,
∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
在Rt△BCH中,CH=BC•cos∠BCH=,
BH=BC•sin∠BCH=,
在Rt△BHP中,PH=BH=,
∴CP=CH+PH=+;
(3)的值不变,
∵∠BCP=∠BAP,∠CPB=∠D,
∴△CBP∽△ABD,
∴=,
∴=,即=.
【点睛】
本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.
24、(1)图见解析;(2)126°;(3)1.
【解析】
(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
【详解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
将条形统计图补充完整,如图所示.
(2)42÷120×100%×360°=126°.
答:扇形统计图中的A等对应的扇形圆心角为126°.
(3)1500×=1(人).
答:该校学生对政策内容了解程度达到A等的学生有1人.
【点睛】
本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
25、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).
【解析】
(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;
(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;
(3)找出A的对称点A′,连接BA′,与x轴交点即为P.
【详解】
(1)如图1所示,△A1B1C1,即为所求:
(2)如图2所示,△A2B2C2,即为所求:
(3)找出A的对称点A′(1,﹣1),
连接BA′,与x轴交点即为P;
如图3所示,点P即为所求,点P坐标为(2,0).
【点睛】
本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.
26、(1);(2).
【解析】
(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;
(2)根据直线上的点Q(x,y)在直线的下方可得2x-1<3x+2,解不等式即得结果.
【详解】
解:(1)∵一次函数平行于直线,∴可设该一次函数的解析式为:,
∵直线过点M(4,7),
∴8+b=7,解得b=-1,
∴一次函数的解析式为:y=2x-1;
(2)∵点Q(x,y)是该一次函数图象上的点,∴y=2x-1,
又∵点Q在直线的下方,如图,
∴2x-1<3x+2,
解得x>-3.
【点睛】
本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.
27、﹣x+1,2.
【解析】
先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
【详解】
原式=(x﹣2)÷(﹣)
=(x﹣2)÷
=(x﹣2)•
=﹣x+1,
当x=﹣1时,原式=1+1=2.
【点睛】
本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
江西省育华学校2022年中考数学全真模拟试卷含解析: 这是一份江西省育华学校2022年中考数学全真模拟试卷含解析,共19页。试卷主要包含了函数y=自变量x的取值范围是等内容,欢迎下载使用。
2022年江西省宁都县中考数学全真模拟试题含解析: 这是一份2022年江西省宁都县中考数学全真模拟试题含解析,共16页。试卷主要包含了答题时请按要求用笔,下列图案是轴对称图形的是等内容,欢迎下载使用。
2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析: 这是一份2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。