终身会员
搜索
    上传资料 赚现金

    2022届辽宁省抚顺县达标名校十校联考最后数学试题含解析

    立即下载
    加入资料篮
    2022届辽宁省抚顺县达标名校十校联考最后数学试题含解析第1页
    2022届辽宁省抚顺县达标名校十校联考最后数学试题含解析第2页
    2022届辽宁省抚顺县达标名校十校联考最后数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届辽宁省抚顺县达标名校十校联考最后数学试题含解析

    展开

    这是一份2022届辽宁省抚顺县达标名校十校联考最后数学试题含解析,共22页。试卷主要包含了如图,已知,,则的度数为等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若a+b=3,,则ab等于( )
    A.2 B.1 C.﹣2 D.﹣1
    2.下列方程中,没有实数根的是(  )
    A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0
    3.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为(  )

    A. B. C. D.
    4.下列事件中是必然事件的是(  )
    A.早晨的太阳一定从东方升起
    B.中秋节的晚上一定能看到月亮
    C.打开电视机,正在播少儿节目
    D.小红今年14岁,她一定是初中学生
    5.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是(  )

    A. B. C. D.
    6.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
    ①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    7.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    8. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )

    A.赛跑中,兔子共休息了50分钟
    B.乌龟在这次比赛中的平均速度是0.1米/分钟
    C.兔子比乌龟早到达终点10分钟
    D.乌龟追上兔子用了20分钟
    9.如图,已知,,则的度数为( )

    A. B. C. D.
    10.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是(  )
    月用电量(度)
    25
    30
    40
    50
    60
    户数
    1
    2
    4
    2
    1
    A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.

    12.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.
    13.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.

    14.要使分式有意义,则x的取值范围为_________.
    15.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    16.=________
    17.已知二次函数中,函数y与x的部分对应值如下:

    ...
    -1
    0
    1
    2
    3
    ...

    ...
    10
    5
    2
    1
    2
    ...
    则当时,x的取值范围是_________.
    三、解答题(共7小题,满分69分)
    18.(10分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离;求这枚火箭从到的平均速度是多少(结果精确到0.01)?

    19.(5分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
    (1)求该反比例函数的解析式;
    (1)求三角形CDE的面积.

    20.(8分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
    (1)通过计算,判断AD2与AC•CD的大小关系;
    (2)求∠ABD的度数.

    21.(10分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
    22.(10分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
    (1)求c与b的函数关系式;
    (2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
    (3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.

    23.(12分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
    24.(14分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.
    (1)判断四边形ACBD的形状,并说明理由;
    (2)求证:ME=AD.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    ∵a+b=3,
    ∴(a+b)2=9
    ∴a2+2ab+b2=9
    ∵a2+b2=7
    ∴7+2ab=9,7+2ab=9
    ∴ab=1.
    故选B.
    考点:完全平方公式;整体代入.
    2、D
    【解析】
    分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.
    【详解】
    A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
    B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;
    C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;
    D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.
    故选D.
    3、D
    【解析】
    连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
    【详解】
    解:如图,连接OC、OD、BD,

    ∵点C、D是半圆O的三等分点,
    ∴,
    ∴∠AOC=∠COD=∠DOB=60°,
    ∵OC=OD,
    ∴△COD是等边三角形,
    ∴OC=OD=CD,
    ∵,
    ∴,
    ∵OB=OD,
    ∴△BOD是等边三角形,则∠ODB=60°,
    ∴∠ODB=∠COD=60°,
    ∴OC∥BD,
    ∴,
    ∴S阴影=S扇形OBD,
    S半圆O,
    飞镖落在阴影区域的概率,
    故选:D.
    【点睛】
    本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.
    4、A
    【解析】
    必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.
    【详解】
    解:B、C、D选项为不确定事件,即随机事件.故错误;
    一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.
    故选A.
    【点睛】
    该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.
    5、A
    【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
    故选A.
    考点:三视图
    视频
    6、D
    【解析】
    ①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
    所以﹣=﹣1,可得b=2a,
    当x=﹣3时,y<0,
    即9a﹣3b+c<0,
    9a﹣6a+c<0,
    3a+c<0,
    ∵a<0,
    ∴4a+c<0,
    所以①选项结论正确;
    ②∵抛物线的对称轴是直线x=﹣1,
    ∴y=a﹣b+c的值最大,
    即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
    ∴am2+bm<a﹣b,
    m(am+b)+b<a,
    所以此选项结论不正确;
    ③ax2+(b﹣1)x+c=0,
    △=(b﹣1)2﹣4ac,
    ∵a<0,c>0,
    ∴ac<0,
    ∴﹣4ac>0,
    ∵(b﹣1)2≥0,
    ∴△>0,
    ∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
    ④由图象得:当x>﹣1时,y随x的增大而减小,
    ∵当k为常数时,0≤k2≤k2+1,
    ∴当x=k2的值大于x=k2+1的函数值,
    即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
    ak4+bk2>a(k2+1)2+b(k2+1),
    所以此选项结论不正确;
    所以正确结论的个数是1个,
    故选D.
    7、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    8、D
    【解析】
    分析:根据图象得出相关信息,并对各选项一一进行判断即可.
    详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
    乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
    兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
    在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
    故选D.
    点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
    9、B
    【解析】
    分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.
    详解:∵∠AOC=70°, ∠BOC=30°, ∴∠AOB=70°-30°=40°,
    ∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.
    点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.
    10、C
    【解析】
    极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
    【详解】
    解:A、这组数据的极差是:60-25=35,故本选项错误;
    B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
    C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
    D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
    故选:C.
    【点睛】
    本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
    【详解】
    如图,假设线段CD、AB交于点E,
    ∵AB是O的直径,弦CD⊥AB,

    又∵


    ∴S阴影=S扇形ODB−S△DOE+S△BEC
    故答案为:.
    【点睛】
    考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.
    12、.
    【解析】
    先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.
    【详解】
    解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
    ∴AB==1.
    ∵CD⊥AB,
    ∴CD=.
    ∵AD•BD=CD2,
    设AD=x,BD=1-x.
    解得x=,
    ∴点A在圆外,点B在圆内,
    r的范围是,
    故答案为.
    【点睛】
    本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.
    13、1
    【解析】
    解:∵直线y=x+b与双曲线 (x>0)交于点P,设P点的坐标(x,y),
    ∴x﹣y=﹣b,xy=8,
    而直线y=x+b与x轴交于A点,
    ∴OA=b.
    又∵OP2=x2+y2,OA2=b2,
    ∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.
    故答案为1.
    14、x≠1
    【解析】
    由题意得
    x-1≠0,
    ∴x≠1.
    故答案为x≠1.
    15、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    16、13
    【解析】

    =2+9-4+6
    =13.
    故答案是:13.
    17、0 【解析】
    根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.
    【详解】
    由表可知,二次函数的对称轴为直线x=2,
    所以,x=4时,y=5,
    所以,y<5时,x的取值范围为0 故答案为0 【点睛】
    此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.

    三、解答题(共7小题,满分69分)
    18、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
    【解析】
    (Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
    【详解】
    (Ⅰ)在中,,≈0.74,
    ∴.
    答:发射台与雷达站之间的距离约为.
    (Ⅱ)在中,,
    ∴.
    ∵在中,,
    ∴.
    ∴.
    答:这枚火箭从到的平均速度大约是.
    【点睛】
    本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
    19、(1);(1)11.
    【解析】
    (1)根据正切的定义求出OA,证明△BAO∽△BEC,根据相似三角形的性质计算;
    (1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可.
    【详解】
    解:(1)∵tan∠ABO=,OB=4,
    ∴OA=1,
    ∵OE=1,
    ∴BE=6,
    ∵AO∥CE,
    ∴△BAO∽△BEC,
    ∴=,即=,
    解得,CE=3,即点C的坐标为(﹣1,3),
    ∴反比例函数的解析式为:;
    (1)设直线AB的解析式为:y=kx+b,
    则,
    解得,,
    则直线AB的解析式为:,

    解得,,,
    ∴当D的坐标为(6,1),
    ∴三角形CDE的面积=三角形CBE的面积+三角形BED的面积
    =×6×3+×6×1
    =11.

    【点睛】
    此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键.
    20、(1)AD2=AC•CD.(2)36°.
    【解析】
    试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;
    (2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
    设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
    试题解析:(1)∵AD=BC=,∴==.
    ∵AC=1,∴CD==,∴;
    (2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
    设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
    考点:相似三角形的判定与性质.
    21、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
    22、(1);(2);(3)
    【解析】
    (1)把A(-1,0)代入y=x2-bx+c,即可得到结论;
    (2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;
    (3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论.
    【详解】
    (1)把A(﹣1,0)代入,
    ∴,
    ∴;
    (2)由(1)得,,
    ∵点D为抛物线顶点,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    将代入得,,
    解得:,(舍去),
    ∴二次函数解析式为:;
    (3)连接QM,DM,

    ∵,,
    ∴,∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,设,则,
    ∴,同理,
    设,则,∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    ∵,
    ∴,,
    ∵,
    ∴,即,
    解得:,(舍去),
    ∴,
    ∵,
    ∴,
    ∴,
    当时,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,,,
    过P作于T,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.
    23、至少涨到每股6.1元时才能卖出.
    【解析】
    根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.
    【详解】
    解:设涨到每股x元时卖出,
    根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,
    解这个不等式得x≥,
    即x≥6.1.
    答:至少涨到每股6.1元时才能卖出.
    【点睛】
    本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.
    24、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.
    【解析】
    (1)根据题意得出,即可得出结论;
    (2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.
    【详解】
    (1)解:四边形ACBD是菱形;理由如下:
    根据题意得:AC=BC=BD=AD,
    ∴四边形ACBD是菱形(四条边相等的四边形是菱形);
    (2)证明:∵DE∥AB,BE∥CD,
    ∴四边形BEDM是平行四边形,
    ∵四边形ACBD是菱形,
    ∴AB⊥CD,
    ∴∠BMD=90°,
    ∴四边形ACBD是矩形,
    ∴ME=BD,
    ∵AD=BD,
    ∴ME=AD.
    【点睛】
    本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.

    相关试卷

    山东省滕州市达标名校2022年十校联考最后数学试题含解析:

    这是一份山东省滕州市达标名校2022年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,化简的结果是等内容,欢迎下载使用。

    达标名校2021-2022学年十校联考最后数学试题含解析:

    这是一份达标名校2021-2022学年十校联考最后数学试题含解析,共22页。试卷主要包含了在数轴上表示不等式2等内容,欢迎下载使用。

    2022年陕西省滨河达标名校十校联考最后数学试题含解析:

    这是一份2022年陕西省滨河达标名校十校联考最后数学试题含解析,共28页。试卷主要包含了在中,,,,则的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map