高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件教案配套ppt课件
展开学习目标:1理解充分条件、必要条件、充分必要条件的意义与具体要求。2.会判断命题成立的充分、必要、充分必要条件。
阅读课本,思考并完成以下问题1.什么充要条件?2.什么充分不必要条件?3.什么是必要不充分条件?4.什么是既不充分又不必要条件?。
2.做一做(请把正确的答案写在横线上)(1)若p是q的充分条件,q是r的充分条件,则p是r的 条件.(2)“a>0,b>0”是“ab>0”的 条件.(3)“若p,则q”的逆命题为真,则p是q的 条件.
【解析】(1)由题意知p⇒q,q⇒r,故p⇒r,所以p是r的充分条件.答案:充分(2)当a>0,b>0时,显然ab>0成立,故“a>0,b>0”是“ab>0”的充分条件答案:充分(3)因为“若p,则q”的逆命题为真,即“若q,则p”为真,所以q⇒p,即p是q的必要条件.答案:必要
【思考】(1)若p是q的充分条件,p是惟一的吗?提示:不一定惟一,凡是能使q成立的条件都是它的充分条件,如x>3是x>0的充分条件,x>5,x>10等都是x>0的充分条件.(2)若q是p的必要条件,q是惟一的吗?提示:不一定惟一,凡是由p推出的结论都是它的必要条件,如x>0是x>3的必要条件,x>-1,x>2等都是x>3的必要条件.
3.从集合角度看充分、必要条件(1)依据设集合A={x|p(x)},B={x|q(x)}.若x具有性质p,则x∈A;若x具有性质q,则x∈B.若A⊆B,就是说x具有性质p,则x必具有性质q,即p⇒q.类似地,B⊆A与q⇒p等价,A=B与p⇔q等价.
(2)结论如果把p研究的范围看成集合A,把q研究的范围看成集合B,则可得下表.当所要研究的p,q含有变量,即涉及方程的解集、不等式的解集,或者与集合有关或所描述的对象可以用集合表示时,可以借助集合间的包含关系,利用Venn图或数轴解题.
解题方法(充分条件与必要条件的判断方法)(1)定义法
1.“x=1”是“x2-2x+1=0”的( )A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件 解析 解x2-2x+1=0得x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A
2.求证:方程x2+(2k-1)x+k2=0的两个根均大于1的充要条件是k<-2.
②充分性:当k<-2时,Δ=(2k-1)2-4k2=1-4k>0.设方程x2+(2k-1)x+k2=0的两个根为x1,x2,则(x1-1)(x2-1)=x1x2-(x1+x2)+1=k2+2k-1+1=k(k+2)>0.又(x1-1)+(x2-1)=(x1+x2)-2=-(2k-1)-2=-2k-1>0,∴x1-1>0,x2-1>0.∴x1>1,x2>1.综上可知,方程x2+(2k-1)x+k2=0有两个大于1的根的充要条件为k<-2.
关于x的方程ax2+bx+c=0有一根为1的充要条件是a+b+c=0。
证明:(1)必要性,即“若x=1是方程ax2+bx+c=0的根,则a+b+c=0”.∵x=1是方程的根,将x=1代入方程,得a 12+b 1+c=0,即a+b+c=0.(2)充分性,即“若a+b+c=0,则x=1是方程ax2+bx+c=0的根”.把x=1代入方程的左边,得a 12+b 1+c=a+b+c.∵a+b+c=0,∴x=1是方程的根.综合(1)(2)知命题成立
必修 第一册1.4 充分条件与必要条件图片课件ppt: 这是一份必修 第一册1.4 充分条件与必要条件图片课件ppt,共1页。
数学必修 第一册1.4 充分条件与必要条件教课内容课件ppt: 这是一份数学必修 第一册1.4 充分条件与必要条件教课内容课件ppt,共1页。
人教A版 (2019)必修 第一册1.4 充分条件与必要条件教案配套课件ppt: 这是一份人教A版 (2019)必修 第一册1.4 充分条件与必要条件教案配套课件ppt,共27页。