|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届山东青岛重点名校中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    2022届山东青岛重点名校中考数学考前最后一卷含解析01
    2022届山东青岛重点名校中考数学考前最后一卷含解析02
    2022届山东青岛重点名校中考数学考前最后一卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东青岛重点名校中考数学考前最后一卷含解析

    展开
    这是一份2022届山东青岛重点名校中考数学考前最后一卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解为,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是(   )

    A. B.a C. D.
    2.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )

    A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD
    3.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
    A. B. C. D.
    4.方程的解为(  )
    A.x=﹣1 B.x=1 C.x=2 D.x=3
    5.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    6.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )

    A.10 B.11 C.12 D.13
    7.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=(  )

    A.110° B.120° C.125° D.135°
    8.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为(  )
    A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米
    9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=(  )

    A.3 B.4 C.5 D.6
    10.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )

    A.∠NOQ=42° B.∠NOP=132°
    C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补
    二、填空题(共7小题,每小题3分,满分21分)
    11.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.
    12.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.
    13.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____

    14.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= ________ 。
    15.如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点.若,则的长为________.

    16.如图,在四边形中,,,,,,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动.若,当__时,是等腰三角形.

    17.等腰梯形是__________对称图形.
    三、解答题(共7小题,满分69分)
    18.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
    收集数据:
    30
    60
    81
    50
    40
    110
    130
    146
    90
    100
    60
    81
    120
    140
    70
    81
    10
    20
    100
    81
    整理数据:
    课外阅读平均时间x(min)
    0≤x<40
    40≤x<80
    80≤x<120
    120≤x<160
    等级
    D
    C
    B
    A
    人数
    3
    a
    8
    b
    分析数据:
    平均数
    中位数
    众数
    80
    m
    n
    请根据以上提供的信息,解答下列问题:
    (1)填空:a=  ,b= ;m=  ,n=  ;
    (2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
    (3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
    19.(5分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
    租车公司:按日收取固定租金80元,另外再按租车时间计费.
    共享汽车:无固定租金,直接以租车时间(时)计费.
    如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:
    (1)分别求出y1、y2与x的函数表达式;
    (2)请你帮助小丽一家选择合算的租车方案.

    20.(8分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.

    21.(10分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

    22.(10分)问题探究
    (1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为   ;
    (2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
    问题解决
    (3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.

    23.(12分)小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:
    (1)函数y=自变量的取值范围是   ;
    (2)下表列出了y与x的几组对应值:
    x

    ﹣2

    m




    1

    2

    y



    1

    4
    4

    1



    表中m的值是   ;
    (3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;
    (4)结合函数y=的图象,写出这个函数的性质:   .(只需写一个)

    24.(14分)某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.

    (1)观察图,其中 , ;
    (2)求第2趟电瓶车距乙地的路程与的函数关系式;
    (3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
    ∴MG=CG=×a=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    2、D
    【解析】
    根据垂径定理判断即可.
    【详解】
    连接DA.
    ∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
    ∵2∠DAB=∠BOD,∴∠CAD=∠BOD.

    故选D.
    【点睛】
    本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
    3、D
    【解析】
    试题分析:列表如下




    白1

    白2



    (黑,黑)

    (白1,黑)

    (白2,黑)

    白1

    (黑,白1)

    (白1,白1)

    (白2,白1)

    白2

    (黑,白2)

    (白1,白2)

    (白2,白2)

    由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.
    考点:用列表法求概率.
    4、B
    【解析】
    观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    方程的两边同乘(x−3)(x+1),得
    (x−2) (x+1)=x(x−3),

    解得x=1.
    检验:把x=1代入(x−3)(x+1)=-4≠0.
    ∴原方程的解为:x=1.
    故选B.
    【点睛】
    本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.
    5、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    6、B
    【解析】
    根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.
    【详解】
    由统计图可得,
    本班学生有:6+9+10+8+7=40(人),
    该班这些学生一周锻炼时间的中位数是:11,
    故选B.
    【点睛】
    本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.
    7、D
    【解析】
    如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
    ∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
    ∴∠ABE+∠BED+∠CDE=360°.
    又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
    ∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
    ∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
    故选D.

    【点睛】
    本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
    8、D
    【解析】
    解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.
    故选D.
    点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).
    9、D
    【解析】
    欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.
    【详解】
    ∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
    则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
    ∴S1+S1=4+4-1×1=2.
    故选D.
    10、C
    【解析】
    试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.
    考点:角的度量.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x2+7x-4
    【解析】
    设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.
    【详解】
    解:设他所捂的多项式为A,则根据题目信息可得



    他所捂的多项式为
    故答案为
    【点睛】
    本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;
    12、4.02×1.
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:40.2万=4.02×1,
    故答案为:4.02×1.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    13、
    【解析】
    设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.
    【详解】
    设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).
    ∵2018=4×504+2,∴K2018为(1009,0).
    故答案为:(),(1009,0).
    【点睛】
    本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.
    14、4:7或2:5
    【解析】
    根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
    【详解】
    解:当E在线段CD上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=2k,BF=3k
    ∴BE=BF+EF=5k
    ∴EF:BE=2k∶5k=2∶5
    当当E在线段CD的延长线上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=4k,BF=3k
    ∴BE=BF+EF=7k
    ∴EF:BE=4k∶7k=4∶7
    故答案为:4:7或2:5.
    【点睛】
    本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
    15、13
    【解析】
    根据正方形的性质得出AD=AB,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根据AAS推出△AED≌△BFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;
    【详解】
    ∵ABCD是正方形(已知),
    ∴AB=AD,∠ABC=∠BAD=90°;
    又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
    ∴∠FBA=∠EAD(等量代换);
    ∵BF⊥a于点F,DE⊥a于点E,
    ∴在Rt△AFB和Rt△AED中,
    ∵,
    ∴△AFB≌△AED(AAS),
    ∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),
    ∴EF=AF+AE=DE+BF=8+5=13.
    故答案为13.
    点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED≌△BFA是解此题的关键.
    16、或.
    【解析】
    根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,①当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;②当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t.
    【详解】
    解:由运动知,,,
    ,,
    ,,
    是等腰三角形,且,
    ①当时,过点P作PE⊥AD于点E

    点在的垂直平分线上, QE=,AE=BP



    ②当时,如图,过点作于,


    ,,

    四边形是矩形,
    ,,

    在中,,



    点在边上,不和重合,


    此种情况符合题意,
    即或时,是等腰三角形.
    故答案为:或.
    【点睛】
    此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键.
    17、轴
    【解析】
    根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.
    【详解】
    画图如下:

    结合图形,根据轴对称的定义及等腰梯形的特征可知,
    等腰梯形是轴对称图形.
    故答案为:轴
    【点睛】
    本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.

    三、解答题(共7小题,满分69分)
    18、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本
    【解析】
    (1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;
    (2)达标的学生人数=总人数×达标率,依此即可求解;
    (3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.
    【详解】
    解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;
    (2)(人).
    答:估计达标的学生有300人;
    (3)80×52÷260=16(本).
    答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.
    【点睛】
    本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.
    19、(1)y1=kx+80,y2=30x;(2)见解析.
    【解析】
    (1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;
    (2)分y1=y2,y1<y2,y1>y2三种情况分析即可.
    【详解】
    解:(1)由题意,设y1=kx+80,
    将(2,110)代入,得110=2k+80,解得k=15,
    则y1与x的函数表达式为y1=15x+80;
    设y2=mx,
    将(5,150)代入,得150=5m,解得m=30,
    则y2与x的函数表达式为y2=30x;
    (2)由y1=y2得,15x+80=30x,解得x=;
    由y1<y2得,15x+80<30x,解得x>;
    由y1>y2得,15x+80>30x,解得x<.
    故当租车时间为小时时,两种选择一样;
    当租车时间大于小时时,选择租车公司合算;
    当租车时间小于小时时,选择共享汽车合算.
    【点睛】
    本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.
    20、 (1)见解析;(2)2.
    【解析】
    (1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.
    【详解】
    (1)如图所示,点P即为所求.

    (2)设BP=x,则CP=1﹣x,
    由(1)中作图知AP=CP=1﹣x,
    在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,
    解得:x=2,
    所以BP=2.
    【点睛】
    考核知识点:勾股定理和线段垂直平分线.
    21、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
    【解析】
    (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
    (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,,.
    ∵点、分别是、的中点,
    ∴,.
    ∴.
    在和中,

    ∴.
    解:当四边形是菱形时,四边形是矩形.

    证明:∵四边形是平行四边形,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∵四边形是菱形,
    ∴.
    ∵,
    ∴.
    ∴,.
    ∵,
    ∴.
    ∴.
    即.
    ∴四边形是矩形.
    【点睛】
    本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
    22、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.
    【解析】
    (1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;
    (2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;
    (3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.
    【详解】
    (1)如图①,延长CD至G,使得DG=BE,
    ∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,
    ∴△ABE≌△ADG,
    ∴AE=AG,∠BAE=∠DAG,
    ∵∠EAF=45°,∠BAD=90°,
    ∴∠BAE+∠DAF=45°,
    ∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,
    又∵AF=AF,
    ∴△AEF≌△AEG,
    ∴EF=GF=DG+DF=BE+DF,
    故答案为:BE+DF=EF;
    (2)存在.
    在等边三角形ABC中,AB=BC,∠ABC=60°,
    如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.
    由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,
    ∴△DBE是等边三角形,
    ∴DE=BD,
    ∴在△DCE中,DE<DC+CE=4+2=6,
    ∴当D、C、E三点共线时,DE存在最大值,且最大值为6,
    ∴BD的最大值为6;
    (3)存在.
    如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,
    ∵AB=BD,∠ABC=∠DBE,BC=BE,
    ∴△ABC≌△DBE,
    ∴DE=AC,
    ∵在等边三角形BCE中,EF⊥BC,
    ∴BF=BC=2,
    ∴EF=BF=×2=2,
    以BC为直径作⊙F,则点D在⊙F上,连接DF,
    ∴DF=BC=×4=2,
    ∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.

    【点睛】
    本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.
    23、(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y轴对称.
    【解析】
    (1)由分母不等于零可得答案;
    (2)求出y=1时x的值即可得;
    (3)根据表格中的数据,描点、连线即可得;
    (4)由函数图象即可得.
    【详解】
    (1)函数y=的定义域是x≠0,
    故答案为x≠0;
    (2)当y=1时,=1,
    解得:x=1或x=﹣1,
    ∴m=﹣1,
    故答案为﹣1;
    (3)如图所示:

    (4)图象关于y轴对称,
    故答案为图象关于y轴对称.
    【点睛】
    本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.
    24、(1)0.8;2.1;(2);(2)图像见解析,2
    【解析】
    (1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;
    (2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;
    (2)结合的图象即可画出的图象,观察图象即可得出答案.
    【详解】
    解:(1),

    故答案为:0.8;2.1.
    (2)根据题意得:
    电瓶车的速度为
    ∴.
    (2)画出函数图象,如图所示.
    观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.
    故答案为:2.

    【点睛】
    本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.

    相关试卷

    2022年山东省利津县重点名校中考数学考前最后一卷含解析: 这是一份2022年山东省利津县重点名校中考数学考前最后一卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。

    2022年山东省青岛5中重点名校中考考前最后一卷数学试卷含解析: 这是一份2022年山东省青岛5中重点名校中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了下列运算正确的是,计算的结果是等内容,欢迎下载使用。

    2022届濉溪县重点达标名校中考数学考前最后一卷含解析: 这是一份2022届濉溪县重点达标名校中考数学考前最后一卷含解析,共18页。试卷主要包含了济南市某天的气温,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map