2022届山东省滨州市北城英才校中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )
A.1 B.m C.m2 D.
2.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )
A. B. C. D.
3.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
①图1中a的值为500;
②乙车的速度为35 m/s;
③图1中线段EF应表示为;
④图2中函数图象与x轴交点的横坐标为1.
其中所有的正确结论是( )
A.①④ B.②③
C.①②④ D.①③④
4.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于( )
A.2 B.3 C. 4 D.6
5.下列计算正确的是( )
A.a2•a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a10
6.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )
A. B. C. D.
7.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )
A. B.15 C. D.9
8.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为( )
A. B. C. D.
9.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0
10.下列各图中,∠1与∠2互为邻补角的是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
12.计算:()0﹣=_____.
13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
14.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.
15.如图, AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.
16.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
17.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:________.
三、解答题(共7小题,满分69分)
18.(10分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
类别
频数(人数)
频率
武术类
0.25
书画类
20
0.20
棋牌类
15
b
器乐类
合计
a
1.00
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
请你根据以上图表提供的信息解答下列问题:
①a=_____,b=_____;
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
19.(5分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.
(1)如图1,若抛物线经过点A和D(﹣2,0).
①求点C的坐标及该抛物线解析式;
②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.
20.(8分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.
21.(10分)已知二次函数.
(1)该二次函数图象的对称轴是;
(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;
(3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.
22.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目
选手
服装
普通话
主题
演讲技巧
李明
85
70
80
85
张华
90
75
75
80
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
23.(12分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.
[理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;
[探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求的值.
24.(14分) 先化简,再求值: ,其中x是满足不等式﹣(x﹣1)≥的非负整数解.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
本题主要考察二次函数与反比例函数的图像和性质.
【详解】
令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.
【点睛】
巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.
2、C
【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.
【详解】
设瓶子的容积即酒精与水的和是1,
则纯酒精之和为:1×+1×=+,
水之和为:+,
∴混合液中的酒精与水的容积之比为:(+)÷(+)=,
故选C.
【点睛】
本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.
3、A
【解析】
分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.
详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,∴y=-5x+500,
当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.
点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.
4、B
【解析】
作BD⊥x轴于D,CE⊥x轴于E,
∴BD∥CE,
∴,
∵OC是△OAB的中线,
∴,
设CE=x,则BD=2x,
∴C的横坐标为,B的横坐标为,
∴OD=,OE=,
∴DE=OE-OD=﹣=,
∴AE=DE=,
∴OA=OE+AE=,
∴S△OAB=OA•BD=×=1.
故选B.
点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.
5、B
【解析】
根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.
【详解】
A、a2•a3=a5,错误;
B、(a2)3=a6,正确;
C、不是同类项,不能合并,错误;
D、a5+a5=2a5,错误;
故选B.
【点睛】
本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.
6、C
【解析】
过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
【详解】
过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
∵⊙O的周长等于6πcm,
∴2πr=6π,
解得:r=3,
∴⊙O的半径为3cm,即OA=3cm,
∵六边形ABCDEF是正六边形,
∴∠AOB=×360°=60°,OA=OB,
∴△OAB是等边三角形,
∴AB=OA=3cm,
∵OH⊥AB,
∴AH=AB,
∴AB=OA=3cm,
∴AH=cm,OH==cm,
∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).
故选C.
【点睛】
此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.
7、C
【解析】
由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.
【详解】
由折叠得到EB=EF,∠B=∠DFE,
在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,
根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,
解得:x=5,
∴EF=EB=5,CE=4,
∵FD∥BC,
∴∠DFE=∠FEC,
∴∠FEC=∠B,
∴EF∥AB,
∴,
则AB===,
故选C.
【点睛】
此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.
8、A
【解析】
连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
【详解】
连接BD,
∵四边形ABCD为矩形,
∴BD过圆心O,
∵∠BDC=∠BPC(圆周角定理)
∴cos∠BDC=cos∠BPC
∵BD为直径,
∴∠BCD=90°,
∵=,
∴设DC为x,
则BC为2x,
∴BD===x,
∴cos∠BDC===,
∵cos∠BDC=cos∠BPC,
∴cos∠BPC=.
故答案选A.
【点睛】
本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.
9、B
【解析】
试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
∴k<0,b>0,
故选B.
考点:一次函数的性质和图象
10、D
【解析】
根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
∴k=1×1=1.
点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
12、-1
【解析】
本题需要运用零次幂的运算法则、立方根的运算法则进行计算.
【详解】
由分析可得:()0﹣=1-2=﹣1.
【点睛】
熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.
13、m>-1
【解析】
首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
【详解】
解:,
①+②得1x+1y=1m+4,
则x+y=m+1,
根据题意得m+1>0,
解得m>﹣1.
故答案是:m>﹣1.
【点睛】
本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
14、4
【解析】
由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.
故答案为4.
点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
15、18
【解析】
连接OB,
∵OA=OB,∴∠B=∠A=30°,
∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,
∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,
∴∠BOC=∠B,∴CB=OC=6,
∴AB=AC+BC=18,
故答案为18.
16、
【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.
【详解】
解:所有可能的结果如下表:
男1
男2
女1
女2
男1
(男1,男2)
(男1,女1)
(男1,女2)
男2
(男2,男1)
(男2,女1)
(男2,女2)
女1
(女1,男1)
(女1,男2)
(女1,女2)
女2
(女2,男1)
(女2,男2)
(女2,女1)
由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,
所以其概率为挑选的两位教师恰好是一男一女的概率为=,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
17、答案不唯一
【解析】
分析:把y改写成顶点式,进而解答即可.
详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为
y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.
三、解答题(共7小题,满分69分)
18、(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.
【解析】
(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;
(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.
【详解】
(1)∵调查的人数较多,范围较大,
∴应当采用随机抽样调查,
∵到六年级每个班随机调查一定数量的同学相对比较全面,
∴丙同学的说法最合理.
(2)①∵喜欢书画类的有20人,频率为0.20,
∴a=20÷0.20=100,
b=15÷100=0.15;
②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,
∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;
③喜欢武术类的人数为:560×0.25=140人.
【点睛】
本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
19、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a<1;
【解析】
(1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.
【详解】
(1)①如图2,∵A(1,3),B(1,1),
∴OA=3,OB=1,
由旋转知,∠ABC=91°,AB=CB,
∴∠ABO+∠CBE=91°,
过点C作CG⊥OB于G,
∴∠CBG+∠BCG=91°,
∴∠ABO=∠BCG,
∴△AOB≌△GBC,
∴CG=OB=1,BG=OA=3,
∴OG=OB+BG=4
∴C(4,1),
抛物线经过点A(1,3),和D(﹣2,1),
∴,
∴,
∴抛物线解析式为y=﹣x2+x+3;
②由①知,△AOB≌△EBC,
∴∠BAO=∠CBF,
∵∠POB=∠BAO,
∴∠POB=∠CBF,
如图1,OP∥BC,
∵B(1,1),C(4,1),
∴直线BC的解析式为y=x﹣,
∴直线OP的解析式为y=x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍)
∴P(,);
在直线OP上取一点M(3,1),
∴点M的对称点M'(3,﹣1),
∴直线OP'的解析式为y=﹣x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍),
∴P'(,﹣);
(2)同(1)②的方法,如图3,
∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴,
∴,
∴抛物线y=ax2﹣6ax+8a+1,
令y=1,
∴ax2﹣6ax+8a+1=1,
∴x1×x2=
∵符合条件的Q点恰好有2个,
∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,
∴x1×x2=≤1,
∵a<1,
∴8a+1≥1,
∴a≥﹣,
即:﹣≤a<1.
【点睛】
本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.
20、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).
【解析】
(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;
(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.
【详解】
(1)∵双曲线y=(m≠0)经过点A(﹣,2),
∴m=﹣1.
∴双曲线的表达式为y=﹣.
∵点B(n,﹣1)在双曲线y=﹣上,
∴点B的坐标为(1,﹣1).
∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
∴,解得
∴直线的表达式为y=﹣2x+1;
(2)当y=﹣2x+1=0时,x=,
∴点C(,0).
设点P的坐标为(x,0),
∵S△ABP=3,A(﹣,2),B(1,﹣1),
∴×3|x﹣|=3,即|x﹣|=2,
解得:x1=﹣,x2=.
∴点P的坐标为(﹣,0)或(,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.
21、 (1)x=1;(2),;(3)
【解析】
(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,
(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.
(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.
【详解】
(1)该二次函数图象的对称轴是直线;
(2)∵该二次函数的图象开口向上,对称轴为直线,,
∴当时,的值最大,即.
把代入,解得.
∴该二次函数的表达式为.
当时,,
∴.
(3)易知a0,
∵当时,均有,
∴,解得
∴的取值范围.
【点睛】
本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.
22、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
【解析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
∵80.5>78.5,
∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
23、tanA=;综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
【解析】
(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===
(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:
当底边PQ与它的中线AE相等,即AE=PQ时,
==,
∴=;
当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
(3)作QN⊥AP于N,可得tan∠APQ===,
tan∠APE===,
∴=,
【详解】
解:[理解]∵AC和BD是“对应边”,
∴AC=BD,
设AC=2x,则CD=x,BD=2x,
∵∠C=90°,
∴BC===x,
∴tanA===;
[探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,
如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,
∵PC=QC,∠ACB=∠ACD,
∴AC是QP的垂直平分线,
∴AP=AQ,
∵∠CAB=∠ACP,∠AEF=∠CEP,
∴△AEF∽△CEP,
∴===,
∵PE=CE,
∴=,
分两种情况:
当底边PQ与它的中线AE相等,即AE=PQ时,
==,
∴=;
当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
如图3,作QN⊥AP于N,
∴MN=AN=PM=QM,
∴QN=MN,
∴ntan∠APQ===,
∴ta∠APE===,
∴=,
综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.
24、-
【解析】
【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x的值代入化简后的结果进行计算即可.
【详解】原式=,
=,
=,
∵﹣(x﹣1)≥,
∴x﹣1≤﹣1,
∴x≤0,非负整数解为0,
∴x=0,
当x=0时,原式=-.
【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.
2023年山东省滨州市滨城区中考数学模拟预测题(原卷版+解析版): 这是一份2023年山东省滨州市滨城区中考数学模拟预测题(原卷版+解析版),文件包含2023年山东省滨州市滨城区中考数学模拟预测题原卷版docx、2023年山东省滨州市滨城区中考数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
2022年上海奉贤华亭校中考数学模拟预测题含解析: 这是一份2022年上海奉贤华亭校中考数学模拟预测题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图所示,在平面直角坐标系中A,一、单选题,1﹣的相反数是,计算2a2+3a2的结果是等内容,欢迎下载使用。
2022年山东省菏泽单县北城三中中考数学模拟预测试卷含解析: 这是一份2022年山东省菏泽单县北城三中中考数学模拟预测试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,6的相反数为,的绝对值是等内容,欢迎下载使用。