|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届山东省济南市济阳区达标名校中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022届山东省济南市济阳区达标名校中考数学模拟预测题含解析01
    2022届山东省济南市济阳区达标名校中考数学模拟预测题含解析02
    2022届山东省济南市济阳区达标名校中考数学模拟预测题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省济南市济阳区达标名校中考数学模拟预测题含解析

    展开
    这是一份2022届山东省济南市济阳区达标名校中考数学模拟预测题含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,分式有意义,则x的取值范围是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    2.把多项式ax3﹣2ax2+ax分解因式,结果正确的是(  )
    A.ax(x2﹣2x) B.ax2(x﹣2)
    C.ax(x+1)(x﹣1) D.ax(x﹣1)2
    3.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是(  )

    A. B. C. D.
    4.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为(  )

    A.24 B.18 C.12 D.9
    5.将某不等式组的解集表示在数轴上,下列表示正确的是( )
    A. B.
    C. D.
    6.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
    A. B.
    C. D.
    7.分式有意义,则x的取值范围是(  )
    A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7
    8.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是(  )

    A.100° B.80° C.60° D.50°
    9.已知a-2b=-2,则4-2a+4b的值是(  )
    A.0 B.2 C.4 D.8
    10.下列运算正确的是(  )
    A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(+)2=5
    11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )

    A.的长 B.的长 C.的长 D.的长
    12.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是(  )
    A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.
    14.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.
    15.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.
    16.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.

    17.= .
    18.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.

    (1)求抛物线的解析式;
    (2)若PN:PM=1:4,求m的值;
    (3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+的最小值.
    20.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
    21.(6分)问题探究
    (1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
    (2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
    问题解决
    (3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.

    22.(8分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.

    23.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
    组别

    成绩(分)

    频数(人数)

    频率





    2

    0.04





    10

    0.2





    14

    b





    a

    0.32





    8

    0.16

    请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
    若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
    24.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
    25.(10分)在矩形中,点在上,,⊥,垂足为.求证.若,且,求.

    26.(12分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。
    (1)求小丽随机取出一根筷子是红色的概率;
    (2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。
    27.(12分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.
    (1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;
    (2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.
    2、D
    【解析】
    先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
    【详解】
    原式=ax(x2﹣2x+1)=ax(x﹣1)2,
    故选D.
    【点睛】
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    3、B
    【解析】
    △ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
    【详解】
    解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
    当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
    符合题意的函数关系的图象是B;
    故选B.
    【点睛】
    本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
    4、A
    【解析】
    【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
    【详解】∵E是AC中点,
    ∵EF∥BC,交AB于点F,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×3=6,
    ∴菱形ABCD的周长是4×6=24,
    故选A.
    【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
    5、B
    【解析】
    分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.
    点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:

    故选B.
    点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    6、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:原计划用时为:,实际用时为:.
    所列方程为:,
    故选C.
    【点睛】
    本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    7、A
    【解析】
    直接利用分式有意义则分母不为零进而得出答案.
    【详解】
    解:分式有意义,
    则x﹣1≠0,
    解得:x≠1.
    故选:A.
    【点睛】
    此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
    8、B
    【解析】
    试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.
    故选:B

    9、D
    【解析】
    ∵a-2b=-2,
    ∴-a+2b=2,
    ∴-2a+4b=4,
    ∴4-2a+4b=4+4=8,
    故选D.
    10、B
    【解析】
    利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.
    【详解】
    解:A、a2与a3不能合并,所以A选项错误;
    B、原式=a6÷a6=1,所以A选项正确;
    C、原式=a5,所以C选项错误;
    D、原式=2+2+3=5+2,所以D选项错误.
    故选:B.
    【点睛】
    本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    11、B
    【解析】
    【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
    【解答】用求根公式求得:



    AD的长就是方程的正根.
    故选B.
    【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
    12、D
    【解析】
    直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
    当经过第一、二、四象限时, ,解得0 综上所述,0≤k<2。故选D

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、k<1
    【解析】
    根据一元二次方程根的判别式结合题意进行分析解答即可.
    【详解】
    ∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,
    ∴△=,
    解得:.
    故答案为:.
    【点睛】
    熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.
    14、2
    【解析】
    ∵,
    ∴,
    故答案为2.
    15、1.
    【解析】
    先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.
    【详解】
    对称轴为
    ∵a=﹣1<0,
    ∴当x>1时,y随x的增大而减小,
    ∴当x=2时,二次函数y=﹣(x﹣1)2+2的最大值为1,
    故答案为:1.
    【点睛】
    本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.
    16、1
    【解析】
    设点P(m,m+2),
    ∵OP=,
    ∴ =,
    解得m1=1,m2=﹣1(不合题意舍去),
    ∴点P(1,1),
    ∴1=,
    解得k=1.
    点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.
    17、2
    【解析】
    试题分析:根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
    ∵22=4,∴=2.
    考点:算术平方根.
    18、1.
    【解析】
    试题解析:连接OE,如下图所示,

    则:OE=OA=R,
    ∵AB是⊙O的直径,弦EF⊥AB,
    ∴ED=DF=4,
    ∵OD=OA-AD,
    ∴OD=R-2,
    在Rt△ODE中,由勾股定理可得:
    OE2=OD2+ED2,
    ∴R2=(R-2)2+42,
    ∴R=1.
    考点:1.垂径定理;2.解直角三角形.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)m=3;(3)
    【解析】
    (1)本题需先根据图象过A点,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.
    【详解】
    解:(1)∵A(4,0)在抛物线上,
    ∴0=16a+4(a+2)+2,解得a=﹣,
    ∴抛物线的解析式为y=;
    (2)∵
    ∴令x=0可得y=2,
    ∴OB=2,
    ∵OP=m,
    ∴AP=4﹣m,
    ∵PM⊥x轴,
    ∴△OAB∽△PAN,
    ∴,
    ∴,
    ∴,
    ∵M在抛物线上,
    ∴PM=+2,
    ∵PN:MN=1:3,
    ∴PN:PM=1:4,
    ∴,
    解得m=3或m=4(舍去);
    (3)在y轴上取一点Q,使,如图,

    由(2)可知P1(3,0),且OB=2,
    ∴,且∠P2OB=∠QOP2,
    ∴△P2OB∽△QOP2,
    ∴,
    ∴当Q(0,)时,QP2=,
    ∴AP2+BP2=AP2+QP2≥AQ,
    ∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,
    ∵A(4,0),Q(0,),
    ∴AQ==,
    即AP2+BP2的最小值为
    【点睛】
    本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.
    20、1
    【解析】
    先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
    【详解】
    解:a3b+2a2b2+ab3
    =ab(a2+2ab+b2)
    =ab(a+b)2,
    将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
    故代数式a3b+2a2b2+ab3的值是1.
    21、(1)1;2-;;(1)4+;(4)(200-25-40)米.
    【解析】
    (1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.
    (1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.
    (4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.
    【详解】
    (1)①作AD的垂直平分线交BC于点P,如图①,
    则PA=PD.
    ∴△PAD是等腰三角形.
    ∵四边形ABCD是矩形,
    ∴AB=DC,∠B=∠C=90°.
    ∵PA=PD,AB=DC,
    ∴Rt△ABP≌Rt△DCP(HL).
    ∴BP=CP.
    ∵BC=2,
    ∴BP=CP=1.
    ②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,
    则DA=DP′.

    ∴△P′AD是等腰三角形.
    ∵四边形ABCD是矩形,
    ∴AD=BC,AB=DC,∠C=90°.
    ∵AB=4,BC=2,
    ∴DC=4,DP′=2.
    ∴CP′==.
    ∴BP′=2-.
    ③点A为圆心,AD为半径画弧,交BC于点P″,如图①,
    则AD=AP″.
    ∴△P″AD是等腰三角形.
    同理可得:BP″=.
    综上所述:在等腰三角形△ADP中,
    若PA=PD,则BP=1;
    若DP=DA,则BP=2-;
    若AP=AD,则BP=.
    (1)∵E、F分别为边AB、AC的中点,
    ∴EF∥BC,EF=BC.
    ∵BC=11,
    ∴EF=4.
    以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.

    ∵AD⊥BC,AD=4,
    ∴EF与BC之间的距离为4.
    ∴OQ=4
    ∴OQ=OE=4.
    ∴⊙O与BC相切,切点为Q.
    ∵EF为⊙O的直径,
    ∴∠EQF=90°.
    过点E作EG⊥BC,垂足为G,如图②.
    ∵EG⊥BC,OQ⊥BC,
    ∴EG∥OQ.
    ∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
    ∴四边形OEGQ是正方形.
    ∴GQ=EO=4,EG=OQ=4.
    ∵∠B=40°,∠EGB=90°,EG=4,
    ∴BG=.
    ∴BQ=GQ+BG=4+.
    ∴当∠EQF=90°时,BQ的长为4+.
    (4)在线段CD上存在点M,使∠AMB=40°.
    理由如下:
    以AB为边,在AB的右侧作等边三角形ABG,
    作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.
    设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,
    过点O作OH⊥CD,垂足为H,如图③.

    则⊙O是△ABG的外接圆,
    ∵△ABG是等边三角形,GP⊥AB,
    ∴AP=PB=AB.
    ∵AB=170,
    ∴AP=145.
    ∵ED=185,
    ∴OH=185-145=6.
    ∵△ABG是等边三角形,AK⊥BG,
    ∴∠BAK=∠GAK=40°.
    ∴OP=AP•tan40°
    =145×
    =25.
    ∴OA=1OP=90.
    ∴OH<OA.
    ∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.
    ∴∠AMB=∠AGB=40°,OM=OA=90..
    ∵OH⊥CD,OH=6,OM=90,
    ∴HM==40.
    ∵AE=200,OP=25,
    ∴DH=200-25.
    若点M在点H的左边,则DM=DH+HM=200-25+40.
    ∵200-25+40>420,
    ∴DM>CD.
    ∴点M不在线段CD上,应舍去.
    若点M在点H的右边,则DM=DH-HM=200-25-40.
    ∵200-25-40<420,
    ∴DM<CD.
    ∴点M在线段CD上.
    综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,
    此时DM的长为(200-25-40)米.
    【点睛】
    本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.
    22、 (1) AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3) (3,4)或(5,2)或(3,2).
    【解析】
    试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;
    (2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;
    (3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.
    试题解析:(1)∵y=-x+b经过A(0,1),
    ∴b=1,
    ∴直线AB的解析式是y=-x+1.
    当y=0时,0=-x+1,解得x=3,
    ∴点B(3,0).
    (2)过点A作AM⊥PD,垂足为M,则有AM=1,

    ∵x=1时,y=-x+1=,P在点D的上方,
    ∴PD=n-,S△APD=PD•AM=×1×(n-)=n-
    由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
    ∴S△BPD=PD×2=n-,
    ∴S△PAB=S△APD+S△BPD=n-+n-=n-1;
    (3)当S△ABP=2时,n-1=2,解得n=2,
    ∴点P(1,2).
    ∵E(1,0),
    ∴PE=BE=2,
    ∴∠EPB=∠EBP=45°.
    第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.

    ∵∠CPB=90°,∠EPB=45°,
    ∴∠NPC=∠EPB=45°.
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△BEP,
    ∴PN=NC=EB=PE=2,
    ∴NE=NP+PE=2+2=4,
    ∴C(3,4).
    第2种情况,如图2∠PBC=90°,BP=BC,

    过点C作CF⊥x轴于点F.
    ∵∠PBC=90°,∠EBP=45°,
    ∴∠CBF=∠PBE=45°.
    又∵∠CFB=∠PEB=90°,BC=BP,
    ∴△CBF≌△PBE.
    ∴BF=CF=PE=EB=2,
    ∴OF=OB+BF=3+2=5,
    ∴C(5,2).
    第3种情况,如图3,∠PCB=90°,CP=EB,

    ∴∠CPB=∠EBP=45°,
    在△PCB和△PEB中,

    ∴△PCB≌△PEB(SAS),
    ∴PC=CB=PE=EB=2,
    ∴C(3,2).
    ∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).
    考点:一次函数综合题.
    23、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
    【解析】
    试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
    试题解析:(1)2÷0.04=50
    (2)50×0.32=16 14÷50=0.28
    (3)
    (4)(0.32+0.16)×100%=48%
    考点:频数分布直方图
    24、(1);(2)
    【解析】
    (1)利用概率公式直接计算即可;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
    【详解】
    (1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
    ∴小明选择去白鹿原游玩的概率=;
    (2)画树状图分析如下:

    两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
    所以小明和小华都选择去秦岭国家植物园游玩的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    25、(1)证明见解析;(2)1
    【解析】
    分析:(1)利用“AAS”证△ADF≌△EAB即可得;
    (2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.
    详解:(1)证明:在矩形ABCD中,∵AD∥BC,
    ∴∠AEB=∠DAF,
    又∵DF⊥AE,
    ∴∠DFA=90°,
    ∴∠DFA=∠B,
    又∵AD=EA,
    ∴△ADF≌△EAB,
    ∴DF=AB.
    (2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,
    ∴∠FDC=∠DAF=30°,
    ∴AD=2DF,
    ∵DF=AB,
    ∴AD=2AB=1.
    点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.
    26、(1);(2).
    【解析】
    (1)直接利用概率公式计算;
    (2)画树状图展示所有36种等可能的结果数,再找出两人取出的筷子颜色相同的结果数,然后根据概率公式求解.
    【详解】
    (1)小丽随机取出一根筷子是红色的概率==;
    (2)画树状图为:

    共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,
    所以小丽随爸爸去看新春灯会的概率==.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
    27、(1);(2)P(小宇“略胜一筹”)=.
    【解析】
    分析:
    (1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;
    (2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.
    详解:
    (1)P(摸出标有数字是3的球)=.
    (2)小宇和小静摸球的所有结果如下表所示:
       小静
    小宇   
    4
    5
    6
    3
    (3,4)
    (3,5)
    (3,6)
    4
    (4,4)
    (4,5)
    (4,6)
    5
    (5,4)
    (5,5)
    (5,6)
    从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此
    P(小宇“略胜一筹”)=.
    点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.

    相关试卷

    山东省淄博市张店区重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份山东省淄博市张店区重点达标名校2021-2022学年中考数学模拟预测题含解析,共18页。

    山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析: 这是一份山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了|–|的倒数是,如图,能判定EB∥AC的条件是,一、单选题等内容,欢迎下载使用。

    2022届张家港市达标名校中考数学模拟预测题含解析: 这是一份2022届张家港市达标名校中考数学模拟预测题含解析,共19页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map