2022届山东省金乡市达标名校中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.﹣2018的相反数是( )
A.﹣2018 B.2018 C.±2018 D.﹣
2.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )
A.10 B.14 C.10或14 D.8或10
3.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是( )
A.60° B.35° C.30.5° D.30°
4.下列计算正确的是( )
A.3a2﹣6a2=﹣3
B.(﹣2a)•(﹣a)=2a2
C.10a10÷2a2=5a5
D.﹣(a3)2=a6
5.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1
A.-6 B.- 3 C.3 D.6
7.若,则x-y的正确结果是( )
A.-1 B.1 C.-5 D.5
8.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
9.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )
A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
10.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为( )
A.15° B.55° C.65° D.75°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________
12.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是 ;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .
13.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.
14.的相反数是_____.
15.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.
16.计算的结果等于______________________.
17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.
三、解答题(共7小题,满分69分)
18.(10分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°. 解方程: =1﹣
19.(5分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.
20.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
21.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
22.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
23.(12分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.
(1)求证:四边形是平行四边形;
(2)如果,求证四边形是矩形.
24.(14分)请根据图中提供的信息,回答下列问题:
一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
分析:只有符号不同的两个数叫做互为相反数.
详解:-1的相反数是1.
故选:B.
点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
2、B
【解析】
试题分析: ∵2是关于x的方程x2﹣2mx+3m=0的一个根,
∴22﹣4m+3m=0,m=4,
∴x2﹣8x+12=0,
解得x1=2,x2=1.
①当1是腰时,2是底边,此时周长=1+1+2=2;
②当1是底边时,2是腰,2+2<1,不能构成三角形.
所以它的周长是2.
考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
3、D
【解析】
根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
【详解】
连接OB,
∵点B是弧的中点,
∴∠AOB= ∠AOC=60°,
由圆周角定理得,∠D= ∠AOB=30°,
故选D.
【点睛】
此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
4、B
【解析】
根据整式的运算法则分别计算可得出结论.
【详解】
选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;
选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;
选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;
选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.
故答案选B.
考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.
5、B
【解析】
设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.
【详解】
设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)
∵y=0时,x=-2或x=3,
∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),
∵1﹣(x﹣3)(x+2)=0,
∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,
∵-1<0,
∴两个抛物线的开口向下,
∴x1<﹣2<3<x2,
故选B.
【点睛】
本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.
6、B
【解析】
根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.
【详解】
根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.
故选B.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1•x2.
7、A
【解析】
由题意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故选:A.
8、A
【解析】
∵∠C=90°,BC=2cm,∠A=30°,
∴AB=4,
由勾股定理得:AC=2,
∵四边形DEFG为矩形,∠C=90,
∴DE=GF=2,∠C=∠DEF=90°,
∴AC∥DE,
此题有三种情况:
(1)当0<x<2时,AB交DE于H,如图
∵DE∥AC,
∴,
即,
解得:EH=x,
所以y=•x•x=x2,
∵x 、y之间是二次函数,
所以所选答案C错误,答案D错误,
∵a=>0,开口向上;
(2)当2≤x≤6时,如图,
此时y=×2×2=2,
(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,
BF=x﹣6,与(1)类同,同法可求FN=X﹣6,
∴y=s1﹣s2,
=×2×2﹣×(x﹣6)×(X﹣6),
=﹣x2+6x﹣16,
∵﹣<0,
∴开口向下,
所以答案A正确,答案B错误,
故选A.
点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.
9、B
【解析】
∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
∴抛物线对称轴为x=﹣1.
∴抛物线与y轴的交点为A(0,﹣3).
则与A点以对称轴对称的点是B(2,﹣3).
若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
则B点平移后坐标应为(4,﹣3),
因此将抛物线C向右平移4个单位.
故选B.
10、D
【解析】
根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
【详解】
解:∵∠CDE=165°,∴∠ADE=15°,
∵DE∥AB,∴∠A=∠ADE=15°,
∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,
故选D.
【点睛】
本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
【详解】
作PD⊥BC,则PD∥AC,
∴△PBD~△ABC,
∴ .
∵AC=3,BC=4,
∴AB=,
∵AP=2BP,
∴BP=,
∴,
∴点P运动的路径长=.
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
12、(1)-2;(2)
【解析】
(1)设点P的坐标为(m,n),则点Q的坐标为(m−1,n+2),
依题意得:
,
解得:k=−2.
故答案为−2.
(2)∵BO⊥x轴,CE⊥x轴,
∴BO∥CE,
∴△AOB∽△AEC.
又∵,
∴
令一次函数y=−2x+b中x=0,则y=b,
∴BO=b;
令一次函数y=−2x+b中y=0,则0=−2x+b,
解得:x=,即AO=.
∵△AOB∽△AEC,且,
∴,
∴AE=,AO=,CE=BO=b,OE=AE−AO=.
∵OE⋅CE=|−4|=4,即=4,
解得:b=,或b=− (舍去).
故答案为.
13、;
【解析】
设第一天走了x里,则第二天走了里,第三天走了里…第六天走了里,根据总路程为378里列出方程可得答案.
【详解】
解:设第一天走了x里, 则第二天走了里,第三天走了里…第六天走了里,
依题意得:,
故答案:.
【点睛】
本题主要考查由实际问题抽象出一元一次方程.
14、
【解析】
根据只有符号不同的两个数互为相反数,可得答案.
【详解】
的相反数是−.
故答案为−.
【点睛】
本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.
15、1
【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴当m﹣n=4时,原式=2×42=1.故答案为:1.
16、
【解析】
根据完全平方式可求解,完全平方式为
【详解】
【点睛】
此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
17、1
【解析】
首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.
【详解】
如图:
,
连接BE,
∵四边形BCED是正方形,
∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,
∴BF=CF,
根据题意得:AC∥BD,
∴△ACP∽△BDP,
∴DP:CP=BD:AC=1:3,
∴DP:DF=1:1,
∴DP=PF=CF=BF,
在Rt△PBF中,tan∠BPF==1,
∵∠APD=∠BPF,
∴tan∠APD=1.
故答案为:1
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
三、解答题(共7小题,满分69分)
18、(1)﹣1;(2)x=﹣1是原方程的根.
【解析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;
(2)直接去分母再解方程得出答案.
【详解】
(1)原式=﹣2﹣1+2×
=﹣﹣1+
=﹣1;
(2)去分母得:3x=x﹣3+1,
解得:x=﹣1,
检验:当x=﹣1时,x﹣3≠0,
故x=﹣1是原方程的根.
【点睛】
此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.
19、这栋高楼的高度是
【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
【详解】
过点A作AD⊥BC于点D,
依题意得,,,AD=120,
在Rt△ABD中,
∴,
在Rt△ADC中,
∴,
∴ ,
答:这栋高楼的高度是.
【点睛】
本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
20、(1)(2)证明见解析;(3)1.
【解析】
(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;
(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;
(3)易证△PAC∽△PCB,由相似三角形的性质可得到 ,又因为tan∠ABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.
【详解】
(1)证明:∵PD切⊙O于点C,
∴OC⊥PD,
又∵AD⊥PD,
∴OC∥AD,
∴∠ACO=∠DAC.
∵OC=OA,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)证明:∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB为⊙O的直径,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACF=∠BCF,
∴∠CAO+∠ACF=∠PCB+∠BCF,
∴∠PFC=∠PCF,
∴PC=PF;
(3)解:∵∠PAC=∠PCB,∠P=∠P,
∴△PAC∽△PCB,
∴.
又∵tan∠ABC=,
∴,
∴,
设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,
∵PC2+OC2=OP2,
∴(4k)2+72=(3k+7)2,
∴k=6 (k=0不合题意,舍去).
∴PC=4k=4×6=1.
【点睛】
此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.
21、 (1) ;(2).
【解析】
(1)直接利用概率公式求解;
(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
【详解】
(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
(2)画树状图为:
共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
22、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
【解析】
(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
【详解】
(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
解得:x=300,
500-x=1.
答:甲服装的成本为300元、乙服装的成本为1元.
(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
∴设每件乙服装进价的平均增长率为y,
则,
解得:=0.1=10%,=-2.1(不合题意,舍去).
答:每件乙服装进价的平均增长率为10%;
(3)∵每件乙服装进价按平均增长率再次上调
∴再次上调价格为:242×(1+10%)=266.2(元)
∵商场仍按9折出售,设定价为a元时
0.9a-266.2>0
解得:a>
故定价至少为296元时,乙服装才可获得利润.
考点:一元二次方程的应用,不等式的应用,打折销售问题
23、(1)见解析;(2)见解析.
【解析】
(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
【详解】
证明:(1)是的中点,
,
,
,
又,
,
,
又是的中线,
,
又,
四边形是平行四边形;
(2),
,
∴,即,
,
又,
,
又是的中线,
,
又四边形是平行四边形,
四边形是矩形.
【点睛】
本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.
24、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
【解析】
(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
(2)计算出两商场得费用,比较即可得到结果.
【详解】
解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
根据题意得:3x+4(48﹣x)=152,
解得:x=40,
则一个水瓶40元,一个水杯是8元;
(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
则∵n>10,且n为整数,
∴160+6.4n﹣(120+8n)=40﹣1.6n
讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
∴选择乙商场购买更合算.
当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
∴选择甲商场购买更合算.
【点睛】
此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析: 这是一份山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,函数中,x的取值范围是等内容,欢迎下载使用。
山东省莱芜市达标名校2022年中考数学押题卷含解析: 这是一份山东省莱芜市达标名校2022年中考数学押题卷含解析,共18页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。
2022届山东省青岛39中重点达标名校中考数学押题试卷含解析: 这是一份2022届山东省青岛39中重点达标名校中考数学押题试卷含解析,共18页。试卷主要包含了方程=的解为,下列运算正确的是等内容,欢迎下载使用。