终身会员
搜索
    上传资料 赚现金
    2022届山东省潍坊市昌乐县市级名校中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022届山东省潍坊市昌乐县市级名校中考冲刺卷数学试题含解析01
    2022届山东省潍坊市昌乐县市级名校中考冲刺卷数学试题含解析02
    2022届山东省潍坊市昌乐县市级名校中考冲刺卷数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省潍坊市昌乐县市级名校中考冲刺卷数学试题含解析

    展开
    这是一份2022届山东省潍坊市昌乐县市级名校中考冲刺卷数学试题含解析,共23页。试卷主要包含了下列图形中,不是轴对称图形的是,在,,则的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )

    A. B.
    C. D.
    2.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是  

    A.4 B. C.5 D.6
    3.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )
    A.30° B.60° C.30°或150° D.60°或120°
    4.下列图形中,不是轴对称图形的是(  )
    A. B. C. D.
    5.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是(  )

    A.AE=BF B.∠ADE=∠BEF
    C.△DEF是等边三角形 D.△BEF是等腰三角形
    6.若关于的一元二次方程的一个根是0,则的值是( )
    A.1 B.-1 C.1或-1 D.
    7.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )

    A.(―1,2)
    B.(―9,18)
    C.(―9,18)或(9,―18)
    D.(―1,2)或(1,―2)
    8.将2001×1999变形正确的是(  )
    A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1
    9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有(  ).

    A.1个 B.2个 C.3个 D.4个
    10.在,,则的值为( )
    A. B. C. D.
    11.下列图形中,是轴对称图形的是( )
    A. B. C. D.
    12.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为(  )

    A. B. C. D.4﹣
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).

    14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.

    15.方程的解是_________.
    16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:
    ①两人相遇前,甲的速度小于乙的速度;
    ②出发后1小时,两人行程均为10km;
    ③出发后1.5小时,甲的行程比乙多3km;
    ④甲比乙先到达终点.
    其中正确的有_____个.

    17.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm

    18.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,
    (1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).
    (2)在(1)条件下,求证:AB2=BD•BC.

    20.(6分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
    21.(6分)如图,直线与双曲线相交于、两点.
    (1) ,点坐标为 .
    (2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标

    22.(8分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.

    23.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.

    24.(10分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.

    25.(10分)解方程: +=1.
    26.(12分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
    27.(12分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据图象可设二次函数的顶点式,再将点(0,0)代入即可.
    【详解】
    解:根据图象,设函数解析式为
    由图象可知,顶点为(1,3)
    ∴,
    将点(0,0)代入得
    解得

    故答案为:D.
    【点睛】
    本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.
    2、A
    【解析】
    作于利用直角三角形30度角的性质即可解决问题.
    【详解】
    解:作于H.

    垂直平分线段AB,






    ,,

    故选A.
    【点睛】
    本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    3、D
    【解析】
    【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.
    【详解】由图可知,OA=10,OD=1,
    在Rt△OAD中,
    ∵OA=10,OD=1,AD==,
    ∴tan∠1=,∴∠1=60°,
    同理可得∠2=60°,
    ∴∠AOB=∠1+∠2=60°+60°=120°,
    ∴∠C=60°,
    ∴∠E=180°-60°=120°,
    即弦AB所对的圆周角的度数是60°或120°,
    故选D.

    【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.
    4、A
    【解析】
    观察四个选项图形,根据轴对称图形的概念即可得出结论.
    【详解】
    根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.
    故选A.
    【点睛】
    此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
    5、D
    【解析】
    连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
    【详解】
    连接BD,∵四边形ABCD是菱形,
    ∴AD=AB,∠ADB=∠ADC,AB∥CD,
    ∵∠A=60°,
    ∴∠ADC=120°,∠ADB=60°,
    同理:∠DBF=60°,
    即∠A=∠DBF,
    ∴△ABD是等边三角形,
    ∴AD=BD,
    ∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
    ∴∠ADE=∠BDF,
    ∵在△ADE和△BDF中,

    ∴△ADE≌△BDF(ASA),
    ∴DE=DF,AE=BF,故A正确;
    ∵∠EDF=60°,
    ∴△EDF是等边三角形,
    ∴C正确;
    ∴∠DEF=60°,
    ∴∠AED+∠BEF=120°,
    ∵∠AED+∠ADE=180°-∠A=120°,
    ∴∠ADE=∠BEF;
    故B正确.
    ∵△ADE≌△BDF,
    ∴AE=BF,
    同理:BE=CF,
    但BE不一定等于BF.
    故D错误.
    故选D.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
    6、B
    【解析】
    根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
    【详解】
    把x=0代入方程得,解得a=±1.
    ∵原方程是一元二次方程,所以 ,所以,故
    故答案为B
    【点睛】
    本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
    7、D
    【解析】
    试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
    方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
    ∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
    故答案选D.

    考点:位似变换.
    8、A
    【解析】
    原式变形后,利用平方差公式计算即可得出答案.
    【详解】
    解:原式=(2000+1)×(2000-1)=20002-1,
    故选A.
    【点睛】
    此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
    9、C
    【解析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.
    ∴abc<0, ①正确;
    2a+b=0,②正确;
    由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;
    由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;
    观察图象得当x=-2时,y<0,
    即4a-2b+c<0
    ∵b=-2a,
    ∴4a+4a+c<0
    即8a+c<0,故⑤正确.
    正确的结论有①②⑤,
    故选:C
    【点睛】
    主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    10、A
    【解析】
    本题可以利用锐角三角函数的定义求解即可.
    【详解】
    解:tanA=,
    ∵AC=2BC,
    ∴tanA=.
    故选:A.
    【点睛】
    本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
    11、B
    【解析】
    分析:根据轴对称图形的概念求解.
    详解:A、不是轴对称图形,故此选项不合题意;
    B、是轴对称图形,故此选项符合题意;
    C、不是轴对称图形,故此选项不合题意;
    D、不是轴对称图形,故此选项不合题意;
    故选B.
    点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.
    12、D
    【解析】
    首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE是∠DEB的平分线,
    ∴∠BEA=∠AED,
    ∴∠DAE=∠AED,
    ∴DE=AD=4,
    再Rt△DEC中,EC===,
    ∴BE=BC-EC=4-.
    故答案选D.
    【点睛】
    本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3n+1
    【解析】
    试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个
    考点:规律型
    14、.
    【解析】
    解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
    故答案为.
    【点睛】
    本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
    15、x=-2
    【解析】
    方程两边同时平方得:
    ,解得:,
    检验:(1)当x=3时,方程左边=-3,右边=3,左边右边,因此3不是原方程的解;
    (2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.
    ∴原方程的解为:x=-2.
    故答案为:-2.
    点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根.
    16、1
    【解析】
    试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;
    由图可得,两人在1小时时相遇,行程均为10km,故②正确;
    甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;
    甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.

    17、
    【解析】
    试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:×4=.
    考点:菱形的性质.
    18、60
    【解析】
    根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
    【详解】
    ∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
    ∴+=100, 解得,AD≈60
    考点:解直角三角形的应用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)作图见解析;(2)证明见解析;
    【解析】
    (1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.
    【详解】
    (1)如图,∠BAD为所作;

    (2)∵∠BAD=∠C,∠B=∠B
    ∴△ABD∽△CBA,
    ∴AB:BC=BD:AB,
    ∴AB2=BD•BC.
    【点睛】
    本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.
    20、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
    21、 (1),;(1),.
    【解析】
    (1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
    【详解】
    解:(1)把点A(-1,a)代入一次函数y=x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(-1,3).
    把点A(-1,3)代入反比例函数y=,
    得:k=-3,
    ∴反比例函数的表达式y=-.
    联立两个函数关系式成方程组得:
    解得: 或
    ∴点B的坐标为(-3,1).
    故答案为3,(-3,1);
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.

    ∵点B、B′关于x轴对称,点B的坐标为(-3,1),
    ∴点B′的坐标为(-3,-1),PB=PB′,
    ∵点A、A′关于y轴对称,点A的坐标为(-1,3),
    ∴点A′的坐标为(1,3),QA=QA′,
    ∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
    设直线A′B′的解析式为y=mx+n,
    把A′,B′两点代入得:
    解得:
    ∴直线A′B′的解析式为y=x+1.
    令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
    令x=0,则y=1,点Q的坐标为(0,1).
    【点睛】
    本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.
    22、(1)AC=;(2).
    【解析】
    【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;
    (2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.
    【详解】(1)如图,过点A作AE⊥BC,
    在Rt△ABE中,tan∠ABC=,AB=5,
    ∴AE=3,BE=4,
    ∴CE=BC﹣BE=5﹣4=1,
    在Rt△AEC中,根据勾股定理得:AC==;
    (2)∵DF垂直平分BC,
    ∴BD=CD,BF=CF=,
    ∵tan∠DBF=,
    ∴DF=,
    在Rt△BFD中,根据勾股定理得:BD==,
    ∴AD=5﹣=,
    则.

    【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.
    23、 (1)详见解析;(2)4.
    【解析】
    试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.
    试题解析:

    (1)连结OD,
    ∵AD平分∠BAC,
    ∴∠DAE=∠DAB,
    ∵OA=OD,
    ∴∠ODA=∠DAO,
    ∴∠ODA=∠DAE,
    ∴OD∥AE,
    ∵DE⊥AC
    ∴OE⊥DE
    ∴DE是⊙O的切线;
    (2)过点O作OF⊥AC于点F,
    ∴AF=CF=3,
    ∴OF=,
    ∵∠OFE=∠DEF=∠ODE=90°,
    ∴四边形OFED是矩形,
    ∴DE=OF=4.
    考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.
    24、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【解析】
    (1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
    (2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
    【详解】
    (1)把A(-1,2)代入,得到k2=-2,
    ∴反比例函数的解析式为.
    ∵B(m,-1)在上,∴m=2,
    由题意,解得:,∴一次函数的解析式为y=-x+1.
    (2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【点睛】
    本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
    25、-3
    【解析】
    试题分析:解得x=-3
    经检验: x=-3是原方程的根.
    ∴原方程的根是x=-3
    考点:解一元一次方程
    点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
    26、(1);(2)
    【解析】
    (1)根据可能性只有男孩或女孩,直接得到其概率;
    (2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.
    【详解】
    解:(1)(1)第二个孩子是女孩的概率=;
    故答案为;
    (2)画树状图为:

    共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
    所以至少有一个孩子是女孩的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    27、⊙O的半径为.
    【解析】
    如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
    【详解】
    解:如图,连接OA.交BC于H.

    ∵点A为的中点,
    ∴OA⊥BD,BH=DH=4,
    ∴∠AHC=∠BHO=90°,
    ∵,AC=9,
    ∴AH=3,
    设⊙O的半径为r,
    在Rt△BOH中,∵BH2+OH2=OB2,
    ∴42+(r﹣3)2=r2,
    ∴r=,
    ∴⊙O的半径为.
    【点睛】
    本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

    相关试卷

    山东省潍坊市昌乐县市级名校2022年中考数学全真模拟试卷含解析: 这是一份山东省潍坊市昌乐县市级名校2022年中考数学全真模拟试卷含解析,共22页。试卷主要包含了已知反比例函数下列结论正确的是等内容,欢迎下载使用。

    山东省蒙阴市级名校2022年中考冲刺卷数学试题含解析: 这是一份山东省蒙阴市级名校2022年中考冲刺卷数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,我市连续7天的最高气温为,估计介于等内容,欢迎下载使用。

    2022年昌都市市级名校中考冲刺卷数学试题含解析: 这是一份2022年昌都市市级名校中考冲刺卷数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中负数是,如图,在中,等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map