2022届陕西省三原县市级名校中考数学仿真试卷含解析
展开
这是一份2022届陕西省三原县市级名校中考数学仿真试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列图标中,是中心对称图形的是,下列各数中负数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.函数的自变量x的取值范围是( )
A. B. C. D.
2.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A. B. C. D.
3.若分式方程无解,则a的值为( )
A.0 B.-1 C.0或-1 D.1或-1
4.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
A.12 B.16 C.20 D.24
5.下列图标中,是中心对称图形的是( )
A. B.
C. D.
6.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
A.1+ B.1+
C.2sin20°+ D.
7.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).
A.50° B.40° C.30° D.25°
8.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=( )
A.3 B.4 C.5 D.6
9.下列各数中负数是( )
A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
10.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.
12.在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为__________.
13.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.
14.如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为 .
15.函数y= 中,自变量x的取值范围是 _____.
16.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
18.(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, ≈1.7)
19.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
20.(8分)解方程
(1)x1﹣1x﹣1=0
(1)(x+1)1=4(x﹣1)1.
21.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
22.(10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
(I)如图①,若BC为⊙O的直径,求BD、CD的长;
(II)如图②,若∠CAB=60°,求BD、BC的长.
23.(12分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.
24.菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据二次根式的意义,被开方数是非负数.
【详解】
根据题意得,
解得.
故选D.
【点睛】
本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负数.
2、C
【解析】
根据平行四边形的性质和圆周角定理可得出答案.
【详解】
根据平行四边形的性质可知∠B=∠AOC,
根据圆内接四边形的对角互补可知∠B+∠D=180°,
根据圆周角定理可知∠D=∠AOC,
因此∠B+∠D=∠AOC+∠AOC=180°,
解得∠AOC=120°,
因此∠ADC=60°.
故选C
【点睛】
该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
3、D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
4、D
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
【详解】
、分别是、的中点,
是的中位线,
,
菱形的周长.
故选:.
【点睛】
本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
5、B
【解析】
根据中心对称图形的概念 对各选项分析判断即可得解.
【详解】
解:A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
【点睛】
本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、A
【解析】
连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
【详解】
连接OT、OC,
∵PT切⊙O于点T,
∴∠OTP=90°,
∵∠P=20°,
∴∠POT=70°,
∵M是OP的中点,
∴TM=OM=PM,
∴∠MTO=∠POT=70°,
∵OT=OC,
∴∠MTO=∠OCT=70°,
∴∠OCT=180°-2×70°=40°,
∴∠COM=30°,
作CH⊥AP,垂足为H,则CH=OC=1,
S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
故选A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
7、B
【解析】
解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,
根据平角为180°可得,∠2=90°﹣50°=40°.
故选B.
【点睛】
本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.
8、D
【解析】
欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.
【详解】
∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故选D.
9、B
【解析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
【详解】
A、-(-2)=2,是正数;
B、-|-2|=-2,是负数;
C、(-2)2=4,是正数;
D、-(-2)3=8,是正数.
故选B.
【点睛】
此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
10、B
【解析】
根据简单概率的计算公式即可得解.
【详解】
一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
故选B.
考点:简单概率计算.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.016×105
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,
【详解】
解:101 600=1.016×105
故答案为:1.016×105
【点睛】
本题考查科学计数法,掌握概念正确表示是本题的解题关键.
12、或
【解析】
设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.
【详解】
解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.
∵直线y=2x-1与x轴交点为C,与y轴交点为A,
∴点A(0,-1),点C(,0),
∴OA=1,OC=,AC==,
∴cos∠ACO==.
∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,
∴∠BAD=∠ACO.
∵AD=3,cos∠BAD==,
∴AB=3.
∵直线y=2x-b与y轴的交点为B(0,-b),
∴AB=|-b-(-1)|=3,
解得:b=1-3或b=1+3.
故答案为1+3或1-3.
【点睛】
本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.
13、20 cm.
【解析】
将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
【详解】
解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
根据勾股定理,得(cm).
故答案为:20cm.
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
14、2.
【解析】
试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.
考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.
15、x≠﹣.
【解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
【详解】
解:根据分式有意义的条件得:2x+3≠1
解得:
故答案为
【点睛】
本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
16、(﹣2016, +1)
【解析】
据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.
【详解】
解:∵△ABC是等边三角形AB=3﹣1=2,
∴点C到x轴的距离为1+2×=+1,
横坐标为2,
∴C(2, +1),
第2018次变换后的三角形在x轴上方,
点C的纵坐标为+1,
横坐标为2﹣2018×1=﹣2016,
所以,点C的对应点C′的坐标是(﹣2016,+1)
故答案为:(﹣2016,+1)
【点睛】
本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.
三、解答题(共8题,共72分)
17、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
18、潜艇C离开海平面的下潜深度约为308米
【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.
试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
设AD=x,则BD=BA+AD=1000+x,
在Rt△ACD中,CD= = =
在Rt△BCD中,BD=CD•tan68°,
∴325+x= •tan68°
解得:x≈100米,
∴潜艇C离开海平面的下潜深度为100米.
点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
视频
19、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
【解析】
(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
【详解】
(1)设每行驶1千米纯用电的费用为x元,根据题意得:
=
解得:x=0.26
经检验,x=0.26是原分式方程的解,
答:每行驶1千米纯用电的费用为0.26元;
(2)从A地到B地油电混合行驶,用电行驶y千米,得:
0.26y+(﹣y)×(0.26+0.50)≤39
解得:y≥74,即至少用电行驶74千米.
20、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.
【解析】
(1)配方法解;
(1)因式分解法解.
【详解】
(1)x1﹣1x﹣1=2,
x1﹣1x+1=1+1,
(x﹣1)1=3,
x﹣1= ,
x=1,
x1=1,x1=1﹣,
(1)(x+1)1=4(x﹣1)1.
(x+1)1﹣4(x﹣1)1=2.
(x+1)1﹣[1(x﹣1)]1=2.
(x+1)1﹣(1x﹣1)1=2.
(x+1﹣1x+1)(x+1+1x﹣1)=2.
(﹣x+3)(3x﹣1)=2.
x1=3,x1=.
【点睛】
考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
21、(1) (2),,144元
【解析】
(1)利用待定系数法求解可得关于的函数解析式;
(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.
【详解】
(1)设与的函数解析式为,
将、代入,得:,
解得:,
所以与的函数解析式为;
(2)根据题意知,
,
,
当时,随的增大而增大,
,
当时,取得最大值,最大值为144,
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【点睛】
本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.
22、(1)BD=CD=5;(2)BD=5,BC=5.
【解析】
(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;
(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.
【详解】
(1)∵BC是⊙O的直径,
∴∠CAB=∠BDC=90°.
∵AD平分∠CAB,
∴,
∴CD=BD.
在直角△BDC中,BC=10,CD2+BD2=BC2,
∴BD=CD=5,
(2)如图②,连接OB,OD,OC,
∵AD平分∠CAB,且∠CAB=60°,
∴∠DAB=∠CAB=30°,
∴∠DOB=2∠DAB=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴BD=OB=OD.
∵⊙O的直径为10,则OB=5,
∴BD=5,
∵AD平分∠CAB,
∴,
∴OD⊥BC,设垂足为E,
∴BE=EC=OB•sin60°=,
∴BC=5.
【点睛】
本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
23、(1)60°;(2)证明略;(3)
【解析】
(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.
【详解】
(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为==.
【点睛】
本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.
24、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
相关试卷
这是一份广西市级名校2023年中考数学仿真试卷含解析,共15页。
这是一份陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则的值为,下列命题正确的是等内容,欢迎下载使用。
这是一份2022年天津一中市级名校中考数学仿真试卷含解析,共22页。试卷主要包含了下列各数中比﹣1小的数是,下面的几何体中,主等内容,欢迎下载使用。