开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届山东省潍坊诸城市达标名校中考一模数学试题含解析

    2022届山东省潍坊诸城市达标名校中考一模数学试题含解析第1页
    2022届山东省潍坊诸城市达标名校中考一模数学试题含解析第2页
    2022届山东省潍坊诸城市达标名校中考一模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省潍坊诸城市达标名校中考一模数学试题含解析

    展开

    这是一份2022届山东省潍坊诸城市达标名校中考一模数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,已知等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是(  )

    A.(6,4) B.(4,6) C.(5,4) D.(4,5)
    2.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是(  )
    A.中位数不相等,方差不相等
    B.平均数相等,方差不相等
    C.中位数不相等,平均数相等
    D.平均数不相等,方差相等
    3.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
    A. B. C. D.
    4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )

    A.15m B.25m C.30m D.20m
    5.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为(  )
    A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
    6.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为(  )
    A.1.21×103 B.12.1×103 C.1.21×104 D.0.121×105
    7.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为(  )

    A. B. C. D.
    8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    9.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为(  )
    A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
    10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )

    A. B. C. D.12
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知关于X的一元二次方程有实数根,则m的取值范围是____________________
    12.若,则= .
    13.已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.
    14.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .

    15.使有意义的x的取值范围是______.
    16.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.

    17.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:
    (1)根据题中信息补全条形统计图.
    (2)所抽取的学生参加其中一项活动的众数是 .
    (3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?

    19.(5分)观察下列多面体,并把下表补充完整.
    名称
    三棱柱
    四棱柱
    五棱柱
    六棱柱
    图形




    顶点数
    6

    10
    12
    棱数
    9
    12


    面数
    5


    8
    观察上表中的结果,你能发现、、之间有什么关系吗?请写出关系式.
    20.(8分)解不等式组
    请结合题意填空,完成本题的解答
    (1)解不等式①,得_______.
    (2)解不等式②,得_______.
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为_______________.
    21.(10分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
    销售单价x(元/kg)

    120

    130



    180

    每天销量y(kg)

    100

    95



    70

    设y与x的关系是我们所学过的某一种函数关系.
    (1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
    (2)当销售单价为多少时,销售利润最大?最大利润是多少?
    22.(10分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    23.(12分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.
    (1)试判断∠AED与∠C的数量关系,并说明理由;
    (2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为   .

    24.(14分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
    (1)这项被调查的总人数是多少人?
    (2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
    (3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.
    【详解】

    如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,
    ∵O′为圆心,
    ∴AC=BC,
    ∵A(0,2),B(0,8),
    ∴AB=8−2=6,
    ∴AC=BC=3,
    ∴OC=8−3=5,
    ∵⊙O′与x轴相切,
    ∴O′D=O′B=OC=5,
    在Rt△O′BC中,由勾股定理可得O′C===4,
    ∴P点坐标为(4,5),
    故选:D.
    【点睛】
    本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.
    2、D
    【解析】
    分别利用平均数以及方差和中位数的定义分析,进而求出答案.
    【详解】
    2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
    3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
    故中位数不相等,方差相等.
    故选:D.
    【点睛】
    本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
    3、A
    【解析】
    根据轴对称图形的概念求解.
    解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
    故选A.
    “点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、D
    【解析】
    根据三角形的中位线定理即可得到结果.
    【详解】
    解:由题意得AB=2DE=20cm,
    故选D.
    【点睛】
    本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    5、D
    【解析】
    试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
    故选D
    点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
    6、C
    【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:1.21万=1.21×104,
    故选:C.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.

    8、D
    【解析】
    由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①∵抛物线对称轴是y轴的右侧,
    ∴ab<0,
    ∵与y轴交于负半轴,
    ∴c<0,
    ∴abc>0,
    故①正确;
    ②∵a>0,x=﹣<1,
    ∴﹣b<2a,
    ∴2a+b>0,
    故②正确;
    ③∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    故③正确;
    ④当x=﹣1时,y>0,
    ∴a﹣b+c>0,
    故④正确.
    故选D.
    【点睛】
    本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
    9、B
    【解析】
    解:3400000=.
    故选B.
    10、C
    【解析】
    设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
    【详解】
    ∵四边形OCBA是矩形,
    ∴AB=OC,OA=BC,
    设B点的坐标为(a,b),
    ∵BD=3AD,
    ∴D(,b),
    ∵点D,E在反比例函数的图象上,
    ∴=k,
    ∴E(a, ),
    ∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
    ∴k=,
    故选:C
    【点睛】
    考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、m≤3且m≠2
    【解析】
    试题解析:∵一元二次方程有实数根
    ∴4-4(m-2)≥0且m-2≠0
    解得:m≤3且m≠2.
    12、1.
    【解析】
    试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
    考点:二次根式有意义的条件.
    13、1 或 0 或
    【解析】
    分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;
    当函数为二次函数时,将(0,0)代入解析式即可求出m的值.
    【详解】
    解:(1)当 m﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴
    交点坐标为(﹣ ,0);与 y 轴交点坐标(0,1).符合题意.
    (2)当 m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,
    于是△=4﹣4(m﹣1)m>0,
    解得,(m﹣)2<,
    解得 m< 或 m> .
    将(0,0)代入解析式得,m=0,符合题意.
    (3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,
    这时:△=4﹣4(m﹣1)m=0,
    解得:m= .
    故答案为1 或 0 或.
    【点睛】
    此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.
    14、①②④.
    【解析】
    ①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.
    ②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.
    ③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.
    ④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.
    故一定正确的是①②④
    15、
    【解析】
    二次根式有意义的条件.
    【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
    16、1
    【解析】
    先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
    【详解】
    解:∵BD=CD,
    ∴,
    ∴OD⊥BC,
    ∴BE=CE,
    而OA=OB,
    ∴OE为△ABC的中位线,
    ∴,
    ∴DE=OD-OE=5-3=1.
    故答案为1.

    【点睛】
    此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
    17、﹣1.
    【解析】
    分析:
    由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.
    详解:
    ∵a与b互为相反数,
    ∴a+b=0,
    ∴a1+ab-1=a(a+b)-1=0-1=-1.
    故答案为:-1.
    点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)见解析(2)A-国学诵读(3)360人
    【解析】
    (1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.
    【详解】
    (1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:

    (2)由条形统计图知众数为“A-国学诵读”;
    (3)由题意得全校学生希望参加活动A的人数为800×=360(人)
    【点睛】
    此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解.
    19、8,15,18,6,7;
    【解析】
    分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,
    利用前面的规律得出a,b,c之间的关系.
    详解:填表如下:
    名称
    三棱柱
    四棱柱
    五棱柱
    六棱柱
    图形




    顶点数a
    6
    8
    10
    11
    棱数b
    9
    11
    15
    18
    面数c
    5
    6
    7
    8
    根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面,共有1n个顶点,共有3n条棱;
    故a,b,c之间的关系:a+c-b=1.
    点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+1)个面,1n个顶点和3n条棱是解题关键.
    20、(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.
    【解析】
    分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.
    【详解】
    解:(1)x≥-1;
    (2)x≤1;
    (3);
    (4)原不等式组的解集为-1≤x≤1.
    【点睛】
    本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    21、 (1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.
    【解析】
    试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;
    (2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.
    试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;
    (2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=,∵a=<0,∴当x<200时,y随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w==7000(元).
    答:当销售单价为180元时,销售利润最大,最大利润是7000元.
    22、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    23、(1)∠AED=∠C,理由见解析;(2)
    【解析】
    (1)根据切线的性质和圆周角定理解答即可;
    (2)根据勾股定理和三角函数进行解答即可.
    【详解】
    (1)∠AED=∠C,证明如下:
    连接BD,

    可得∠ADB=90°,
    ∴∠C+∠DBC=90°,
    ∵CB是⊙O的切线,
    ∴∠CBA=90°,
    ∴∠ABD+∠DBC=90°,
    ∴∠ABD=∠C,
    ∵∠AEB=∠ABD,
    ∴∠AED=∠C,
    (2)连接BE,
    ∴∠AEB=90°,
    ∵∠C=60°,
    ∴∠CAB=30°,
    在Rt△DAB中,AD=3,∠ADB=90°,
    ∴cos∠DAB=,
    解得:AB=2,
    ∵E是半圆AB的中点,
    ∴AE=BE,
    ∵∠AEB=90°,
    ∴∠BAE=45°,
    在Rt△AEB中,AB=2,∠ADB=90°,
    ∴cos∠EAB=,
    解得:AE=.
    故答案为
    【点睛】
    此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
    24、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.

    相关试卷

    山东省潍坊市诸城市重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份山东省潍坊市诸城市重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了不等式组的解集在数轴上可表示为,计算,下列计算正确的是,单项式2a3b的次数是,下面四个几何体等内容,欢迎下载使用。

    山东省潍坊市诸城市重点达标名校2022年中考数学对点突破模拟试卷含解析:

    这是一份山东省潍坊市诸城市重点达标名校2022年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,函数的自变量x的取值范围是等内容,欢迎下载使用。

    山东省潍坊青州市重点达标名校2022年中考五模数学试题含解析:

    这是一份山东省潍坊青州市重点达标名校2022年中考五模数学试题含解析,共18页。试卷主要包含了下列说法中,正确的是,下列等式正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map