终身会员
搜索
    上传资料 赚现金
    2022届山东省枣庄市台儿庄区中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2022届山东省枣庄市台儿庄区中考数学全真模拟试题含解析01
    2022届山东省枣庄市台儿庄区中考数学全真模拟试题含解析02
    2022届山东省枣庄市台儿庄区中考数学全真模拟试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省枣庄市台儿庄区中考数学全真模拟试题含解析

    展开
    这是一份2022届山东省枣庄市台儿庄区中考数学全真模拟试题含解析,共21页。试卷主要包含了下列实数中,最小的数是,计算,下列命题是真命题的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.的值是
    A. B. C. D.
    2.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    3.下列实数中,最小的数是(  )
    A. B. C.0 D.
    4.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
    ①甲步行的速度为60米/分;
    ②乙走完全程用了32分钟;
    ③乙用16分钟追上甲;
    ④乙到达终点时,甲离终点还有300米
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    5.计算(—2)2-3的值是( )
    A、1 B、2 C、—1 D、—2
    6.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为(  )
    A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
    7.下列命题是真命题的是(  )
    A.一组对边平行,另一组对边相等的四边形是平行四边形
    B.两条对角线相等的四边形是平行四边形
    C.两组对边分别相等的四边形是平行四边形
    D.平行四边形既是中心对称图形,又是轴对称图形
    8.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )

    A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
    9.下列二次根式中,最简二次根式的是(  )
    A. B. C. D.
    10.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为(   )
    A.0.3 B.0.4 C.0.5 D.0.6
    二、填空题(共7小题,每小题3分,满分21分)
    11.将161000用科学记数法表示为1.61×10n,则n的值为________.
    12.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
    13.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数的图象恰好经过点A′,B,则的值为_________.

    14.如图,点A(3,n)在双曲线y=上,过点A作 AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是 .

    15.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.
    16.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.

    17.如图所示,数轴上点A所表示的数为a,则a的值是____.

    三、解答题(共7小题,满分69分)
    18.(10分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.

    19.(5分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
    态度
    非常喜欢
    喜欢
    一般
    不知道
    频数
    90
    b
    30
    10
    频率
    a
    0.35
    0.20

    请你根据统计图、表,提供的信息解答下列问题:
    (1)该校这次随即抽取了 名学生参加问卷调查:
    (2)确定统计表中a、b的值:a= ,b= ;
    (3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
    20.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.

    21.(10分)(1)解方程:x2﹣5x﹣6=0;
    (2)解不等式组:.
    22.(10分)先化简,再求值:÷,其中m是方程x2+2x-3=0的根.
    23.(12分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
    (1)求抛物线的表达式;
    (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
    (3)如图2,连接BC,PB,PC,设△PBC的面积为S.
    ①求S关于t的函数表达式;
    ②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

    24.(14分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).

    (1)求抛物线的表达式.
    (2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
    ①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
    ②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
    (3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:,
    故选:D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    2、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    3、B
    【解析】
    根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
    【详解】
    ∵<-2<0<,
    ∴最小的数是-π,
    故选B.
    【点睛】
    此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
    4、A
    【解析】
    【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】由图可得,
    甲步行的速度为:240÷4=60米/分,故①正确,
    乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
    乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
    乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
    故选A.
    【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
    5、A
    【解析】本题考查的是有理数的混合运算
    根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。

    解答本题的关键是掌握好有理数的加法、乘方法则。
    6、D
    【解析】
    根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:
    686000=6.86×105,
    故选:D.
    7、C
    【解析】
    根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.
    【详解】
    A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;
    B、两条对角线互相平分的四边形是平行四边形.故本选项错误;
    C、两组对边分别相等的四边形是平行四边形.故本选项正确;
    D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;
    故选:C.
    【点睛】
    考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
    8、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:10700=1.07×104,
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、C
    【解析】
    判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A、=,被开方数含分母,不是最简二次根式;故A选项错误;
    B、=,被开方数为小数,不是最简二次根式;故B选项错误;
    C、,是最简二次根式;故C选项正确;
    D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;
    故选C.
    考点:最简二次根式.
    10、C
    【解析】
    用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.
    【详解】
    仰卧起坐个数不少于10个的有12、10、10、61、72共1个,
    所以,频率==0.1.
    故选C.
    【点睛】
    本题考查了频数与频率,频率=.

    二、填空题(共7小题,每小题3分,满分21分)
    11、5
    【解析】
    【科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    ∵161000=1.61×105.
    ∴n=5.
    故答案为5.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、
    【解析】
    先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
    的图象经过一、三象限,k>0,从而可以求出k的取值范围.
    【详解】
    ∵y=(k-1)x的函数值y随x的增大而减小,
    ∴k-1<0
    ∴k<1
    而y=(k-1)x的图象与反比例函数y=
    的图象没有公共点,
    ∴k>0
    综合以上可知:0<k<1.
    故答案为0<k<1.
    【点睛】
    本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.
    13、
    【解析】
    解:∵四边形ABCO是矩形,AB=1,
    ∴设B(m,1),
    ∴OA=BC=m,
    ∵四边形OA′B′D与四边形OABD关于直线OD对称,
    ∴OA′=OA=m,∠A′OD=∠AOD=30°,
    ∴∠A′OA=60°,
    过A′作A′E⊥OA于E,
    ∴OE=m,A′E=m,
    ∴A′(m,m),
    ∵反比例函数y=(k≠0)的图象恰好经过点A′,B,
    ∴m•m=m,
    ∴m=,
    ∴k=.

    【点睛】
    本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.
    14、2.
    【解析】
    先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.
    【详解】
    由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).
    ∵线段OA的垂直平分线交OC于点B,∴OB=AB.
    则在△ABC中, AC=2,AB+BC=OB+BC=OC=3,
    ∴△ABC周长的值是2.
    15、
    【解析】
    当k−1=0,即k=1时,原方程为−4x−5=0,
    解得:x=−,
    ∴k=1符合题意;
    当k−1≠0,即k≠1时,有,
    解得:k⩾且k≠1.
    综上可得:k的取值范围为k⩾.
    故答案为k⩾.
    16、1:1
    【解析】
    根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.
    【详解】
    ∵S△BDE:S△CDE=1:3,
    ∴BE:EC=1:3,
    ∵DE∥AC,
    ∴△BED∽△BCA,
    ∴S△BDE:S△BCA=()2=1:16,
    ∴S△BDE:S四边形DECA=1:1,
    故答案为1:1.
    【点睛】
    本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
    17、
    【解析】
    根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
    【详解】
    ∵直角三角形的两直角边为1,2,
    ∴斜边长为,
    那么a的值是:﹣.
    故答案为.
    【点睛】
    此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.

    三、解答题(共7小题,满分69分)
    18、证明见解析
    【解析】
    首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.
    【详解】
    ∵AB∥DE,
    ∴∠A=∠D,
    ∵AF=CD,
    ∴AC=DF,
    在△ABC和△DEF中,

    ∴△ABC≌△DEF,
    ∴BC=EF,∠ACB=∠DFE,
    ∴BC∥EF,
    ∴四边形BCEF是平行四边形.
    【点睛】
    本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.
    19、(1)200,;(2)a=0.45,b=70;(3)900名.
    【解析】
    (1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
    【详解】
    解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
    (2)“非常喜欢”频数90,a= ;
    (3).
    故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
    【点睛】
    此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
    20、证明见解析.
    【解析】
    想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=FC+CD,
    ∴AC=FD,
    在△ABC 和△DEF 中,

    ∴△ABC≌△DEF(AAS)
    ∴BC=EF.
    【点睛】
    本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    21、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.
    【解析】
    (1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
    (2)先求出不等式的解集,再求出不等式组的解集即可.
    【详解】
    (1)x2﹣5x﹣6=0,
    (x﹣6)(x+1)=0,
    x﹣6=0,x+1=0,
    x1=6,x2=﹣1;
    (2)
    ∵解不等式①得:x≥﹣1,
    解不等式②得:x<1,
    ∴不等式组的解集为﹣1≤x<1.
    【点睛】
    本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.
    22、原式=,当m=l时,原式=
    【解析】
    先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.
    解:原式=
    ∵x2+2x-3=0, ∴x1=-3,x2 =1
    ∵‘m是方程x2 +2x-3=0的根, ∴m=-3或m=1
    ∵m+3≠0, ∴.m≠-3, ∴m=1
    当m=l时,原式:
    “点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.
    23、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
    【解析】
    【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
    (2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
    (1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
    ②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
    【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,
    得,解得:,
    ∴抛物线的表达式为y=﹣x2+2x+1;
    (2)在图1中,连接PC,交抛物线对称轴l于点E,
    ∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,
    ∴抛物线的对称轴为直线x=1,
    当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
    ∵抛物线的表达式为y=﹣x2+2x+1,
    ∴点C的坐标为(0,1),点P的坐标为(2,1),
    ∴点M的坐标为(1,6);
    当t≠2时,不存在,理由如下:
    若四边形CDPM是平行四边形,则CE=PE,
    ∵点C的横坐标为0,点E的横坐标为0,
    ∴点P的横坐标t=1×2﹣0=2,
    又∵t≠2,
    ∴不存在;
    (1)①在图2中,过点P作PF∥y轴,交BC于点F.
    设直线BC的解析式为y=mx+n(m≠0),
    将B(1,0)、C(0,1)代入y=mx+n,
    得,解得:,
    ∴直线BC的解析式为y=﹣x+1,
    ∵点P的坐标为(t,﹣t2+2t+1),
    ∴点F的坐标为(t,﹣t+1),
    ∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,
    ∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
    ②∵﹣<0,
    ∴当t=时,S取最大值,最大值为.
    ∵点B的坐标为(1,0),点C的坐标为(0,1),
    ∴线段BC=,
    ∴P点到直线BC的距离的最大值为,
    此时点P的坐标为(,).

    【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
    24、(1)抛物线的解析式为:;
    (2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②存在.R点的坐标是(3,﹣);
    (3)M的坐标为(1,﹣).
    【解析】
    试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
    (2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
    (3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
    试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
    ∵正方形的边长2,
    ∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
    把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
    解得a=,b=﹣,c=﹣2,
    ∴抛物线的解析式为:,
    答:抛物线的解析式为:;
    (2)①由图象知:PB=2﹣2t,BQ=t,
    ∴S=PQ2=PB2+BQ2,
    =(2﹣2t)2+t2,
    即S=5t2﹣8t+4(0≤t≤1).
    答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
    ∵S=5t2﹣8t+4(0≤t≤1),
    ∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
    解得t=,t=(不合题意,舍去),
    此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
    若R点存在,分情况讨论:
    (i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
    则R的横坐标为3,R的纵坐标为﹣,
    即R(3,﹣),
    代入,左右两边相等,
    ∴这时存在R(3,﹣)满足题意;

    (ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
    则R(1,﹣)代入,,
    左右不相等,∴R不在抛物线上.(1分)
    综上所述,存点一点R(3,﹣)满足题意.
    答:存在,R点的坐标是(3,﹣);
    (3)如图,M′B=M′A,

    ∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
    理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
    ∴|MB|﹣|MD|<|DB|,
    即M到D、A的距离之差为|DB|时,差值最大,
    设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
    解得:k=,b=﹣,
    ∴y=x﹣,
    抛物线的对称轴是x=1,
    把x=1代入得:y=﹣
    ∴M的坐标为(1,﹣);
    答:M的坐标为(1,﹣).
    考点:二次函数综合题.

    相关试卷

    2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析): 这是一份2023年山东省枣庄市台儿庄区中考数学三调试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省枣庄市台儿庄区中考三模数学试题(含解析): 这是一份2023年山东省枣庄市台儿庄区中考三模数学试题(含解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    山东省枣庄市台儿庄区2022年中考数学全真模拟试卷含解析: 这是一份山东省枣庄市台儿庄区2022年中考数学全真模拟试卷含解析,共28页。试卷主要包含了考生必须保证答题卡的整洁,如图,在平面直角坐标系中,A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map