搜索
    上传资料 赚现金
    英语朗读宝

    2022届陕西省西安市(师大附中)重点名校中考一模数学试题含解析

    2022届陕西省西安市(师大附中)重点名校中考一模数学试题含解析第1页
    2022届陕西省西安市(师大附中)重点名校中考一模数学试题含解析第2页
    2022届陕西省西安市(师大附中)重点名校中考一模数学试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届陕西省西安市(师大附中)重点名校中考一模数学试题含解析

    展开

    这是一份2022届陕西省西安市(师大附中)重点名校中考一模数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,已知,如图,在中,,,,则等于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为(  )
    A.60 B.30 C.240 D.120
    2.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )

    A. B. C. D.
    3.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是(  )
    A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
    4.下列调查中,最适合采用普查方式的是(  )
    A.对太原市民知晓“中国梦”内涵情况的调查
    B.对全班同学1分钟仰卧起坐成绩的调查
    C.对2018年央视春节联欢晚会收视率的调查
    D.对2017年全国快递包裹产生的包装垃圾数量的调查
    5.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )

    A.点A B.点B C.点C D.点D
    6.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为(   )
    A.1     B.-1   C.2    D.-2
    7.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
    A.-4或-14 B.-4或14 C.4或-14 D.4或14
    8.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    9.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是(  )

    A.27分钟 B.20分钟 C.13分钟 D.7分钟
    10.如图,在中,,,,则等于( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是
    12.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.

    13.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.

    14.因式分解:x3﹣4x=_____.
    15.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.
    16.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______

    三、解答题(共8题,共72分)
    17.(8分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.

    (1)求抛物线的解析式;
    (2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;
    ②当k= 时,点F是线段AB的中点;
    (3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.
    18.(8分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.
    (1)图①中,点C在⊙O上;
    (2)图②中,点C在⊙O内;

    19.(8分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
    (1)求此抛物线的表达式;
    (2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
    20.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 

    请根据所给信息,解答以下问题: 表中 ___ ;____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
    21.(8分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,),反比例函数y=(x>0)的图象经过点E,F.
    (1)求反比例函数及一次函数解析式;
    (2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.

    22.(10分)综合与探究:
    如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
    (1)求A、B两点的坐标及直线l的表达式;
    (2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
    ①请直接写出A′的坐标(用含字母t的式子表示);
    ②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
    (3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.

    23.(12分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
    (1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
    (2)求选出的(m,n)在二、四象限的概率.
    24.为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高   米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.
    【详解】
    如图所示,

    由tanA=,
    设BC=12x,AC=5x,根据勾股定理得:AB=13x,
    由题意得:12x+5x+13x=60,
    解得:x=2,
    ∴BC=24,AC=10,
    则△ABC面积为120,
    故选D.
    【点睛】
    此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.
    2、A
    【解析】
    解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.
    故选A.
    3、C
    【解析】
    分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
    【详解】
    解:①a>1时,二次函数图象开口向上,
    ∵|x1﹣2|>|x2﹣2|,
    ∴y1>y2,
    无法确定y1+y2的正负情况,
    a(y1﹣y2)>1,
    ②a<1时,二次函数图象开口向下,
    ∵|x1﹣2|>|x2﹣2|,
    ∴y1<y2,
    无法确定y1+y2的正负情况,
    a(y1﹣y2)>1,
    综上所述,表达式正确的是a(y1﹣y2)>1.
    故选:C.
    【点睛】
    本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
    4、B
    【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    详解:A、调查范围广适合抽样调查,故A不符合题意;
    B、适合普查,故B符合题意;
    C、调查范围广适合抽样调查,故C不符合题意;
    D、调查范围广适合抽样调查,故D不符合题意;
    故选:B.
    点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    5、B
    【解析】
    ,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.
    【详解】




    因为0.268<0.732<1.268,
    所以 表示的点与点B最接近,
    故选B.
    6、A
    【解析】
    试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.
    故选A
    7、D
    【解析】
    根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
    【详解】
    ∵一条抛物线的函数表达式为y=x2+6x+m,
    ∴这条抛物线的顶点为(-3,m-9),
    ∴关于x轴对称的抛物线的顶点(-3,9-m),
    ∵它们的顶点相距10个单位长度.
    ∴|m-9-(9-m)|=10,
    ∴2m-18=±10,
    当2m-18=10时,m=1,
    当2m-18=-10时,m=4,
    ∴m的值是4或1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
    8、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    9、C
    【解析】
    先利用待定系数法求函数解析式,然后将y=35代入,从而求解.
    【详解】
    解:设反比例函数关系式为:,将(7,100)代入,得k=700,
    ∴,
    将y=35代入,
    解得;
    ∴水温从100℃降到35℃所用的时间是:20-7=13,
    故选C.
    【点睛】
    本题考查反比例函数的应用,利用数形结合思想解题是关键.
    10、A
    【解析】
    分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
    详解:在Rt△ABC中,∵AB=10、AC=8,
    ∴BC=,
    ∴sinA=.
    故选:A.
    点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、k≥,且k≠1
    【解析】
    试题解析:∵a=k,b=2(k+1),c=k-1,
    ∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,
    解得:k≥-,
    ∵原方程是一元二次方程,
    ∴k≠1.
    考点:根的判别式.
    12、
    【解析】
    试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.

    考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.
    13、
    【解析】
    【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.
    【详解】如图,连接OE、AE,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD=4,∠B=∠D=30°,
    ∴AE=AB=2,BE==2,
    ∵OA=OB=OE,
    ∴∠B=∠OEB=30°,
    ∴∠BOE=120°,
    ∴S阴影=S扇形OBE﹣S△BOE
    =
    =,
    故答案为.

    【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.
    14、x(x+2)(x﹣2)
    【解析】
    试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
    考点:提公因式法与公式法的综合运用.
    15、13
    【解析】
    根据同时同地物高与影长成比列式计算即可得解.
    【详解】
    解:设旗杆高度为x米,
    由题意得,,
    解得x=13.
    故答案为13.
    【点睛】
    本题考查投影,解题的关键是应用相似三角形.
    16、
    【解析】
    由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    由图象可知:抛物线开口方向向下,则,
    对称轴直线位于y轴右侧,则a、b异号,即,
    抛物线与y轴交于正半轴,则,,故正确;
    对称轴为,,故正确;
    由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,
    所以当时,,即,故正确;
    抛物线与x轴有两个不同的交点,则,所以,故错误;
    当时,,故正确.
    故答案为.
    【点睛】
    本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.

    三、解答题(共8题,共72分)
    17、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.
    【解析】
    (1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.
    (2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.
    ②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.
    (3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论
    将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.
    【详解】
    (1)解:将点(-2,2)和(4,5)分别代入,得:

    解得:
    ∴抛物线的解析式为:.
    (2)①证明:过点B作BD⊥y轴于点D,
    设B(m,),
    ∵BC⊥x轴,BD⊥y轴,F(0,2)
    ∴BC=,
    BD=|m|,DF=

    ∴BC=BF
    ∴∠BFC=∠BCF

    又BC∥y轴,∴∠OFC=∠BCF
    ∴∠BFC=∠OFC
    ∴FC平分∠BFO .

    (说明:写一个给1分)
    (3)存在点B,使△MBF的周长最小.
    过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F
    由(2)知B1F=B1N,BF=BE
    ∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN
    △MBF的周长=MF+MB+BF=MF+MB+BE
    根据垂线段最短可知:MN<MB+BE
    ∴当点B在点B1处时,△MBF的周长最小
    ∵M(3,6),F(0,2)
    ∴,MN=6
    ∴△MBF周长的最小值=MF+MN=5+6=11
    将x=3代入,得:
    ∴B1(3,)
    将F(0,2)和B1(3,)代入y=kx+b,得:


    解得:
    ∴此时直线l的解析式为:.
    【点睛】
    本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.
    18、图形见解析
    【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E ,利用(1)的方法画图即可.
    试题解析:
    如图①∠DBC就是所求的角;
    如图②∠FBE就是所求的角

    19、(1)y=-(x-3)2+5(2)5
    【解析】
    (1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
    (2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
    【详解】
    (1)设此抛物线的表达式为y=a(x-3)2+5,
    将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
    ∴此抛物线的表达式为
    (2)∵A(1,3),抛物线的对称轴为直线x=3,
    ∴B(5,3).
    令x=0,则
    ∴△ABC的面积
    【点睛】
    考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
    20、(1)0.3,45;(2);(3)
    【解析】
    (1)根据频数的和为样本容量,频率的和为1,可直接求解;
    (2)根据频率可得到百分比,乘以360°即可;
    (3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.
    【详解】
    (1)a=0.3,b=45
    (2)360°×0.3=108°
    (3)列关系表格为:

    由表格可知,满足题意的概率为:.
    考点:1、频数分布表,2、扇形统计图,3、概率
    21、(1);;(2)点P坐标为(,).
    【解析】
    (1)将F(4,)代入,即可求出反比例函数的解析式;再根据求出E点坐标,将E、F两点坐标代入,即可求出一次函数解析式;
    (2)先求出△EBF的面积,
    点P是线段EF上一点,可设点P坐标为,
    根据面积公式即可求出P点坐标.
    【详解】
    解:(1)∵反比例函数经过点,
    ∴n=2,
    反比例函数解析式为.
    ∵的图象经过点E(1,m),
    ∴m=2,点E坐标为(1,2).
    ∵直线 过点,点,
    ∴,解得,
    ∴一次函数解析式为;
    (2)∵点E坐标为(1,2),点F坐标为,
    ∴点B坐标为(4,2),
    ∴BE=3,BF=,
    ∴,
    ∴ .
    点P是线段EF上一点,可设点P坐标为,
    ∴,
    解得,
    ∴点P坐标为.
    【点睛】
    本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.
    22、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
    (2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
    (3)存在,P点坐标为(,)或(,﹣).
    【解析】
    (1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
    (2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
    ②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
    (3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
    【详解】
    (1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
    设直线l的解析式为y=kx+b,
    把A(﹣1,0),D(0,﹣)代入得,解得,
    ∴直线l的解析式为y=﹣x﹣;
    (2)①作A′H⊥x轴于H,如图,

    ∵OA=1,OD=,
    ∴∠OAD=60°,
    ∵EF∥AD,
    ∴∠AEF=60°,
    ∵点A 关于直线l的对称点为A′,
    ∴EA=EA′=t,∠A′EF=∠AEF=60°,
    在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
    ∴OH=OE+EH=t﹣1+t=t﹣1,
    ∴A′(t﹣1, t);
    ②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
    解得t1=0(舍去),t2=2,
    ∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
    此时四边形A′BEF为菱形,理由如下:
    当t=2时,A′点的坐标为(2,),E(1,0),
    ∵∠OEF=60°
    ∴OF=OE=,EF=2OE=2,
    ∴F(0,),
    ∴A′F∥x轴,
    ∵A′F=BE=2,A′F∥BE,
    ∴四边形A′BEF为平行四边形,
    而EF=BE=2,
    ∴四边形A′BEF为菱形;
    (3)存在,如图:

    当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
    ∵OE=t﹣1=,
    ∴此时P点坐标为(,);
    当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,

    ∵∠AEA′=120°,
    ∴∠A′EB=60°,
    ∴∠EBA′=30°
    ∴BQ=A′Q=•t=t,
    ∴t﹣1+t=3,解得t=,
    此时A′(1,),E(,0),
    点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
    综上所述,满足条件的P点坐标为(,)或(,﹣).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
    23、(1)详见解析;(2)P=.
    【解析】
    试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
    试题解析:
    (1)画树状图得:
    则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
    (2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
    ∴所选出的m,n在第二、三四象限的概率为:P==
    点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
    (2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
    (3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
    (4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
    24、2.1.
    【解析】
    据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
    【详解】
    解:
    据题意得tanB=,
    ∵MN∥AD,
    ∴∠A=∠B,
    ∴tanA=,
    ∵DE⊥AD,
    ∴在Rt△ADE中,tanA=,
    ∵AD=9,
    ∴DE=1,
    又∵DC=0.5,
    ∴CE=2.5,
    ∵CF⊥AB,
    ∴∠FCE+∠CEF=90°,
    ∵DE⊥AD,
    ∴∠A+∠CEF=90°,
    ∴∠A=∠FCE,
    ∴tan∠FCE=
    在Rt△CEF中,CE2=EF2+CF2
    设EF=x,CF=1x(x>0),CE=2.5,
    代入得()2=x2+(1x)2
    解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
    ∴CF=1x=≈2.1,
    ∴该停车库限高2.1米.
    【点睛】
    点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.

    相关试卷

    陕西省西安市周至县重点达标名校2021-2022学年中考二模数学试题含解析:

    这是一份陕西省西安市周至县重点达标名校2021-2022学年中考二模数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下面计算中,正确的是,下列图案中,是轴对称图形的是,下列说法不正确的是等内容,欢迎下载使用。

    陕西省西安市周至县重点达标名校2021-2022学年中考冲刺卷数学试题含解析:

    这是一份陕西省西安市周至县重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,下面的几何体中,主视图为圆的是等内容,欢迎下载使用。

    2022年陕西省西安市莲湖区重点名校中考二模数学试题含解析:

    这是一份2022年陕西省西安市莲湖区重点名校中考二模数学试题含解析,共22页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map