2022届四川省成都市锦江区中考数学押题试卷含解析
展开这是一份2022届四川省成都市锦江区中考数学押题试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上可表示为,a的倒数是3,则a的值是,下列运算正确的是,下列方程中,两根之和为2的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图是由5个相同的正方体搭成的几何体,其左视图是( )
A. B.
C. D.
2.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网 B.球会过球网但不会出界
C.球会过球网并会出界 D.无法确定
3.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
A. B. C. D.
4.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
5.不等式组的解集在数轴上可表示为( )
A. B. C. D.
6.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )
A.4,30° B.2,60° C.1,30° D.3,60°
7.a的倒数是3,则a的值是( )
A. B.﹣ C.3 D.﹣3
8.下列运算正确的是( )
A. =2 B.4﹣=1 C.=9 D.=2
9.已知二次函数(为常数),当时,函数的最小值为5,则的值为( )
A.-1或5 B.-1或3 C.1或5 D.1或3
10.下列方程中,两根之和为2的是( )
A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0
二、填空题(共7小题,每小题3分,满分21分)
11.=________
12.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.
13.如图,在中,,点D、E分别在边、上,且,如果,,那么________.
14.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.
15.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程
已知:线段a、b,
求作:.使得斜边AB=b,AC=a
作法:如图.
(1)作射线AP,截取线段AB=b;
(2)以AB为直径,作⊙O;
(3)以点A为圆心,a的长为半径作弧交⊙O于点C;
(4)连接AC、CB.即为所求作的直角三角形.
请回答:该尺规作图的依据是______.
16.将多项式xy2﹣4xy+4y因式分解:_____.
17.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.
三、解答题(共7小题,满分69分)
18.(10分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积
19.(5分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.
(1)求3、4两月平均每月下调的百分率;
(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?
(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.
20.(8分)已知二次函数.
(1)该二次函数图象的对称轴是;
(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;
(3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.
21.(10分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
22.(10分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离(结果精确到1cm).
23.(12分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.
(1)求sinB的值;
(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.
24.(14分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据三视图的定义即可判断.
【详解】
根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.
【点睛】
本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.
2、C
【解析】
分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A(0,2)代入
得:36a+2.6=2,
解得:
∴y与x的关系式为
当x=9时,
∴球能过球网,
当x=18时,
∴球会出界.
故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
3、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
,
故选:A.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、C
【解析】
Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可
【详解】
∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
∴DO=BC=2,CO=3,
∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
故选:C.
【点睛】
本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化
5、A
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵不等式①得:x>1,
解不等式②得:x≤2,
∴不等式组的解集为1<x≤2,
在数轴上表示为:,
故选A.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
6、B
【解析】
试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,
∴∠A′B′C=60°,AB=A′B′=A′C=4,
∴△A′B′C是等边三角形,
∴B′C=4,∠B′A′C=60°,
∴BB′=6﹣4=2,
∴平移的距离和旋转角的度数分别为:2,60°
故选B.
考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定
7、A
【解析】
根据倒数的定义进行解答即可.
【详解】
∵a的倒数是3,∴3a=1,解得:a=.
故选A.
【点睛】
本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.
8、A
【解析】
根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.
【详解】
A、原式=2,所以A选项正确;
B、原式=4-3=,所以B选项错误;
C、原式==3,所以C选项错误;
D、原式=,所以D选项错误.
故选A.
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
9、A
【解析】
由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x
【详解】
解:∵x>h时,y随x的增大而增大,当x
∴当x=1时,y取得最小值5,
可得:,
解得:h=−1或h=3(舍),
∴h=−1;
②若h>3,当时,y随x的增大而减小,
当x=3时,y取得最小值5,
可得:,
解得:h=5或h=1(舍),
∴h=5,
③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
∴此种情况不符合题意,舍去.
综上所述,h的值为−1或5,
故选:A.
【点睛】
本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.
10、B
【解析】
由根与系数的关系逐项判断各项方程的两根之和即可.
【详解】
在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;
在方程x2-2x-3=0中,两根之和等于2,故B符合题意;
在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;
在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,
故选B.
【点睛】
本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、13
【解析】
=2+9-4+6
=13.
故答案是:13.
12、4.
【解析】
试题分析:连结BC,因为AB是⊙O的直径,所以∠ACB=90°,∠A+∠ABC=90°,又因为BD,CD分别是过⊙O上点B,C的切线,∠BDC=440°,所以CD=BD,所以∠BCD=∠DBC=4°,又∠ABD=90°,所以∠A=∠DBC=4°.
考点:4.圆周角定理;4.切线的性质;4.切线长定理.
13、
【解析】
根据,,得出,利用相似三角形的性质解答即可.
【详解】
∵,,
∴,
∴,即,
∴,
∵,
∴,
故答案为:
【点睛】
本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
14、50°
【解析】
利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.
【详解】
∵AB∥CD,
∴∠EFC=∠2=130°,
∴∠1=180°-∠EFC=50°,
故答案为50°
【点睛】
本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
15、等圆的半径相等,直径所对的圆周角是直角,三角形定义
【解析】
根据圆周角定理可判断△ABC为直角三角形.
【详解】
根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
16、y(xy﹣4x+4)
【解析】
直接提公因式y即可解答.
【详解】
xy2﹣4xy+4y=y(xy﹣4x+4).
故答案为:y(xy﹣4x+4).
【点睛】
本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.
17、30°
【解析】
根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.
【详解】
∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,
∴∠BOD=45°,
又∵∠AOB=15°,
∴∠AOD=∠BOD-∠AOB=45°-15°=30°.
故答案为30°.
三、解答题(共7小题,满分69分)
18、(1),N(3,6);(2)y=-x+2,S△OMN=3.
【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
【详解】
解:(1)∵点M是AB边的中点,∴M(6,3).
∵反比例函数y=经过点M,∴3=.∴k=1.
∴反比例函数的解析式为y=.
当y=6时,x=3,∴N(3,6).
(2)由题意,知M(6,2),N(2,6).
设直线MN的解析式为y=ax+b,则
,
解得,
∴直线MN的解析式为y=-x+2.
∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
【点睛】
本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
19、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析
【解析】
(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;
(2)分别计算出方案一与方案二的费用相比较即可;
(3)根据(1)的答案计算出6月份的价格即可得到答案.
【详解】
(1)设3、4两月平均每月下调的百分率为x,
由题意得:7500(1﹣x)2=6075,
解得:x1=0.1=10%,x2=1.9(舍),
答:3、4两月平均每月下调的百分率是10%;
(2)方案一:6075×100×0.98=595350(元),
方案二:6075×100﹣100×1.5×24=603900(元),
∵595350<603900,
∴方案一更优惠,小颖选择方案一:打9.8折购买;
(3)不会跌破4800元/平方米
因为由(1)知:平均每月下调的百分率是10%,
所以:6075(1﹣10%)2=4920.75(元/平方米),
∵4920.75>4800,
∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.
【点睛】
此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.
20、 (1)x=1;(2),;(3)
【解析】
(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,
(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.
(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.
【详解】
(1)该二次函数图象的对称轴是直线;
(2)∵该二次函数的图象开口向上,对称轴为直线,,
∴当时,的值最大,即.
把代入,解得.
∴该二次函数的表达式为.
当时,,
∴.
(3)易知a0,
∵当时,均有,
∴,解得
∴的取值范围.
【点睛】
本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.
21、木竿PQ的长度为3.35米.
【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
试题解析:
【详解】
解:过N点作ND⊥PQ于D,
则四边形DPMN为矩形,
∴DN=PM=1.8m,DP=MN=1.1m,
∴,
∴QD==2.25,
∴PQ=QD+DP= 2.25+1.1=3.35(m).
答:木竿PQ的长度为3.35米.
【点睛】
本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
22、63cm.
【解析】
试题分析:(1)在Rt ACD,AC=45,DC=60,根据勾股定理可得AD= 即可得到AD的长度;(2)过点E作EF AB,垂足为F,由AE=AC+CE,在直角 EFA中,根据EF=AEsin75°可求出EF的长度,即为点E到车架档AB的距离;
试题解析:
23、(1)sinB=;(2)DE=1.
【解析】
(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;
(2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;
【详解】
(1)在Rt△ABD中,∵BD=DC=9,AD=6,
∴AB==3,∴sinB==.
(2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,
∴DF=3,在Rt△DEF中,DE==1.
考点:1.解直角三角形的应用;2.平行线分线段成比例定理.
24、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
相关试卷
这是一份2023年四川省成都市锦江区中考数学二诊试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年四川省成都市锦江区中考数学二模试卷(含解析),共38页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省成都市青羊区2021-2022学年中考数学押题试卷含解析,共23页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。