终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届上海市浦东新区南片联合体中考四模数学试题含解析

    立即下载
    加入资料篮
    2022届上海市浦东新区南片联合体中考四模数学试题含解析第1页
    2022届上海市浦东新区南片联合体中考四模数学试题含解析第2页
    2022届上海市浦东新区南片联合体中考四模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届上海市浦东新区南片联合体中考四模数学试题含解析

    展开

    这是一份2022届上海市浦东新区南片联合体中考四模数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,下列各数中,为无理数的是,九年级,下列各组数中,互为相反数的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.cos60°的值等于( )
    A.1 B. C. D.
    2.下列运算正确的是(  )
    A. B.
    C. D.
    3.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是(  )

    A. B. C. D.
    4.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为(  )
    A. B.
    C. D.
    5.下列命题是真命题的个数有(  )
    ①菱形的对角线互相垂直;
    ②平分弦的直径垂直于弦;
    ③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
    ④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
    A.1个 B.2个 C.3个 D.4个
    6.下列各数中,为无理数的是(  )
    A. B. C. D.
    7.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,(  )

    A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2
    C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S2
    8.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )

    A. B. C. D.
    9.下列各组数中,互为相反数的是(  )
    A.﹣2 与2 B.2与2 C.3与 D.3与3-
    10.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.

    12.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______
    13.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
    14.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.

    15.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.

    16.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.

    17.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
    三、解答题(共7小题,满分69分)
    18.(10分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
    (1)求甲、乙2名学生在不同书店购书的概率;
    (2)求甲、乙、丙3名学生在同一书店购书的概率.
    19.(5分)某初中学校组织400 位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:
    表1:甲调查九年级30位同学植树情况统计表(单位:棵)
    每人植树情况
    7
    8
    9
    10
    人数
    3
    6
    15
    6
    频率
    0.1
    0.2
    0.5
    0.2
    表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)
    每人植树情况
    6
    7
    8
    9
    10
    人数
    3
    6
    3
    11
    6
    频率
    0.1
    0.2
    0.1
    0.4
    0.2
    根据以上材料回答下列问题:
    (1)表1中30位同学植树情况的中位数是   棵;
    (2)已知表2的最后两列中有一个错误的数据,这个错误的数据是   ,正确的数据应该是   ;
    (3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?
    20.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.

    (1)求证:DE=DB:
    (2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
    (3)若BD=6,DF=4,求AD的长
    21.(10分) “春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:
    (1)本次参加抽样调查的居民人数是   人;
    (2)将图 ①②补充完整;( 直接补填在图中)
    (3)求图②中表示“A”的圆心角的度数;
    (4)若居民区有8000人,请估计爱吃D汤圆的人数.

    22.(10分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.

    23.(12分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
    24.(14分)阅读下列材料:
    数学课上老师布置一道作图题:
    已知:直线l和l外一点P.
    求作:过点P的直线m,使得m∥l.
    小东的作法如下:
    作法:如图2,
    (1)在直线l上任取点A,连接PA;
    (2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;
    (3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;
    (4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.
    老师说:“小东的作法是正确的.”
    请回答:小东的作图依据是________.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据特殊角的三角函数值直接得出结果.
    【详解】
    解:cos60°=
    故选A.
    【点睛】
    识记特殊角的三角函数值是解题的关键.
    2、D
    【解析】
    由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.
    【详解】
    解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
    B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
    C、(-a)3=≠,故原题计算错误;
    D、2a2•3a3=6a5,故原题计算正确;
    故选:D.
    【点睛】
    本题考查了整式的乘法,解题的关键是掌握有关计算法则.
    3、C
    【解析】
    根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
    【详解】
    解:由题意可得,
    y==,
    当x=40时,y=6,
    故选C.
    【点睛】
    本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
    4、D
    【解析】
    解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
    5、C
    【解析】
    根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
    【详解】
    解:①菱形的对角线互相垂直是真命题;
    ②平分弦(非直径)的直径垂直于弦,是假命题;
    ③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
    ④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
    故选C.
    【点睛】
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.
    6、D
    【解析】
    A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,
    故选D.
    7、D
    【解析】
    根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.
    【详解】
    ∵如图,在△ABC中,DE∥BC,

    ∴△ADE∽△ABC,
    ∴,
    ∴若1AD>AB,即时,,
    此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小,
    故选项A不符合题意,选项B不符合题意.
    若1AD<AB,即时,,
    此时3S1<S1+S△BDE<1S1,
    故选项C不符合题意,选项D符合题意.
    故选D.
    【点睛】
    考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
    8、C
    【解析】
    试题分析:由题意可得,
    第一小组对应的圆心角度数是:×360°=72°,
    故选C.
    考点:1.扇形统计图;2.条形统计图.
    9、A
    【解析】
    根据只有符号不同的两数互为相反数,可直接判断.
    【详解】
    -2与2互为相反数,故正确;
    2与2相等,符号相同,故不是相反数;
    3与互为倒数,故不正确;
    3与3相同,故不是相反数.
    故选:A.
    【点睛】
    此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.
    10、A
    【解析】
    试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
    故选A.
    【考点】简单组合体的三视图.

    二、填空题(共7小题,每小题3分,满分21分)
    11、﹣1
    【解析】
    先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
    【详解】

    在正方形ABCD中,AB=BC,∠ABC=∠BCD,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(SAS),
    ∴∠BAE=∠CBF,
    ∵∠CBF+∠ABF=90°
    ∴∠BAE+∠ABF=90°
    ∴∠AGB=90°
    ∴点G在以AB为直径的圆上,
    由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
    ∵正方形ABCD,BC=2,
    ∴AO=1=OG
    ∴OD=,
    ∴DG=−1,
    故答案为−1.
    【点睛】
    本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
    12、
    【解析】
    【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.
    【详解】设反比例函数解析式为y=,
    由题意得:m2=2m×(-1),
    解得:m=-2或m=0(不符题意,舍去),
    所以点A(-2,-2),点B(-4,1),
    所以k=4,
    所以反比例函数解析式为:y=,
    故答案为y=.
    【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.
    13、4
    【解析】
    根据锐角的余弦值等于邻边比对边列式求解即可.
    【详解】
    ∵∠C=90°,AB=6,
    ∴,
    ∴BC=4.
    【点睛】
    本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
    14、
    【解析】
    解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
    ∵当x=a时,,∴P1的坐标为(a,),
    当x=2a时,,∴P2的坐标为(2a,),
    ……
    ∴Rt△P1B1P2的面积为,
    Rt△P2B2P3的面积为,
    Rt△P3B3P4的面积为,
    ……
    ∴Rt△Pn-1Bn-1Pn的面积为.
    故答案为:
    15、
    【解析】
    过点作于,根据三角形的性质及三角形内角和定理可计算
    再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
    【详解】
    如图,过点作于,
    ∵,
    ∴.
    ∵将绕点逆时针旋转,使点落在点处,此时点落在点处,



    在中,∵

    ∴,
    在中,∵,
    ∴,
    ∴.
    故答案为.
    【点睛】
    本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
    16、46
    【解析】
    试卷分析:根据平行线的性质和平角的定义即可得到结论.
    解:∵直线a∥b,
    ∴∠3=∠1=34°,
    ∵∠BAC=100°,
    ∴∠2=180°−34°−100°=46°,

    故答案为46°.
    17、:k<1.
    【解析】
    ∵一元二次方程有两个不相等的实数根,
    ∴△==4﹣4k>0,
    解得:k<1,
    则k的取值范围是:k<1.
    故答案为k<1.

    三、解答题(共7小题,满分69分)
    18、(1)P=;(2)P=.
    【解析】
    试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
    试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:

    从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
    所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
    (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:

    从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
    所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    19、(1)9;(2)11,12;(3)3360棵
    【解析】
    (1)30位同学的植树量中第15个、16个数都是9,即可得到植树的中位数;
    (2)根据频率相加得1确定频率正确,计算频数即可确定错误的数据是11,正确的硬是12;
    (3)样本数据应体现机会均等由此得到乙同学所抽取的样本更好,再根据部分计算总体的公式即可得到答案.
    【详解】
    (1)表1中30位同学植树情况的中位数是9棵,
    故答案为:9;
    (2)表2的最后两列中,错误的数据是 11,正确的数据应该是30×0.4=12;
    故答案为:11,12;
    (3)乙同学所抽取的样本能更好反映此次植树活动情况,
    (3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),
    答:本次活动400位同学一共植树3360棵.
    【点睛】
    此题考查统计的计算,掌握中位数的计算方法,部分的频数的计算方法,依据样本计算总体的方法是解题的关键.
    20、(1)见解析;(2)2 (3)1
    【解析】
    (1)通过证明∠BED=∠DBE得到DB=DE;
    (2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
    (3)证明△DBF∽△ADB,然后利用相似比求AD的长.
    【详解】
    (1)证明:∵AD平分∠BAC,BE平分∠ABD,
    ∴∠1=∠2,∠3=∠4,
    ∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
    ∴DB=DE;
    (2)解:连接CD,如图,

    ∵∠BAC=10°,
    ∴BC为直径,
    ∴∠BDC=10°,
    ∵∠1=∠2,
    ∴DB=BC,
    ∴△DBC为等腰直角三角形,
    ∴BC=BD=4,
    ∴△ABC外接圆的半径为2;
    (3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
    ∴△DBF∽△ADB,
    ∴=,即=,
    ∴AD=1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
    21、(1)600;(2)120人,20%;30%;(3)108°(4)爱吃D汤圆的人数约为3200人
    【解析】
    试题分析:
    (1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为60÷10%=600(人);
    (2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120÷600×100%=20%,喜欢A类的占总人数的百分比为:180÷600×100%=30%,由此即可将统计图补充完整;
    (3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:360°×30%=108°;
    (4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:8000×40%=3200(人);
    试题解析:
    (1)本次参加抽样调查的居民的人数是:60÷10%=600(人);
    故答案为600;
    (2)由题意得:C的人数为600﹣(180+60+240)=600﹣480=120(人),C的百分比为120÷600×100%=20%;A的百分比为180÷600×100%=30%;
    将两幅统计图补充完整如下所示:

    (3)根据题意得:360°×30%=108°,
    ∴图②中表示“A”的圆心角的度数108°;
    (4)8000×40%=3200(人),
    即爱吃D汤圆的人数约为3200人.
    22、 (1)y=2x+2(2)这位乘客乘车的里程是15km
    【解析】
    (1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
    (2)将y=32代入(1)的解析式就可以求出x的值.
    【详解】
    (1)由图象得:
    出租车的起步价是8元;
    设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得

    解得:
    故y与x的函数关系式为:y=2x+2;
    (2)∵32元>8元,
    ∴当y=32时,
    32=2x+2,
    x=15
    答:这位乘客乘车的里程是15km.
    23、 (1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.
    【解析】
    (1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;
    (2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;
    (3)利用二次函数的性质求出w的最大值,以及此时x的值即可.
    【详解】
    (1)设y=kx+b(k≠0),
    根据题意得,
    解得:k=﹣2,b=220,
    ∴y=﹣2x+220(40≤x≤70);
    (2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;
    (3)w=﹣2(x﹣75)2+21,
    ∵40≤x≤70,
    ∴x=70时,w有最大值为w=﹣2×25+21=2050元,
    ∴当销售单价为70元时,该公司日获利最大,为2050元.
    【点睛】
    此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.
    24、内错角相等,两直线平行
    【解析】
    根据内错角相等,两直线平行即可判断.
    【详解】
    ∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).
    故答案为:内错角相等,两直线平行.
    【点睛】
    本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.

    相关试卷

    上海市浦东新区南片联合体2023-2024学年数学九上期末统考试题含答案:

    这是一份上海市浦东新区南片联合体2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。

    上海市浦东新区南片联合体2023-2024学年八年级数学第一学期期末达标检测模拟试题含答案:

    这是一份上海市浦东新区南片联合体2023-2024学年八年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了下列因式分解结果正确的是等内容,欢迎下载使用。

    2022-2023学年上海市浦东新区南片联合体数学七下期末检测试题含答案:

    这是一份2022-2023学年上海市浦东新区南片联合体数学七下期末检测试题含答案,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map