终身会员
搜索
    上传资料 赚现金
    2022届四川省广元市重点中学中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022届四川省广元市重点中学中考冲刺卷数学试题含解析01
    2022届四川省广元市重点中学中考冲刺卷数学试题含解析02
    2022届四川省广元市重点中学中考冲刺卷数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省广元市重点中学中考冲刺卷数学试题含解析

    展开
    这是一份2022届四川省广元市重点中学中考冲刺卷数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,计算a•a2的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
    ①S△ODB=S△OCA;
    ②四边形OAMB的面积不变;
    ③当点A是MC的中点时,则点B是MD的中点.
    其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    2.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为(  )
    A. B.
    C. D.
    3.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是(  )
    A.216000米 B.0.00216米
    C.0.000216米 D.0.0000216米
    4.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是  
    A. B. C. D.
    5.已知二次函数 图象上部分点的坐标对应值列表如下:
    x


    -3
    -2
    -1
    0
    1
    2

    y


    2
    -1
    -2
    -1
    2
    7

    则该函数图象的对称轴是( )
    A.x=-3 B.x=-2 C.x=-1 D.x=0
    6.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为

    A.12 B.9 C.6 D.4
    7.如图是二次函数的部分图象,由图象可知不等式的解集是( )

    A. B. C.且 D.x<-1或x>5
    8.计算a•a2的结果是(  )
    A.a B.a2 C.2a2 D.a3
    9.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个

    A.1 B.2 C.3 D.4
    10.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .

    12.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.

    13.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.
    14.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.

    15.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.

    16.请写出一个比2大且比4小的无理数:________.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
    (1)分别求这两个函数的表达式;
    (2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.

    18.(8分)如图,AB为☉O的直径,CD与☉O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE,交☉O于点F,交切线于点C,连接AC.

    (1)求证:AC是☉O的切线;
    (2)连接EF,当∠D= °时,四边形FOBE是菱形.
    19.(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
    请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是   个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有   人.
    20.(8分)先化简,后求值:,其中.
    21.(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)

    22.(10分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.

    23.(12分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
    24.两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
    【详解】
    ①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
    ②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
    ③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
    故答案选D.

    考点:反比例系数的几何意义.
    2、D
    【解析】
    根据k>0,k<0,结合两个函数的图象及其性质分类讨论.
    【详解】
    分两种情况讨论:
    ①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;
    ②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.
    分析可得:它们在同一直角坐标系中的图象大致是D.
    故选D.
    【点睛】
    本题主要考查二次函数、反比例函数的图象特点.
    3、B
    【解析】
    绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    2.16×10﹣3米=0.00216米.
    故选B.
    【点睛】
    考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    4、B
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.
    【详解】
    解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;
    B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
    C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
    D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.
    故选:B.
    【点睛】
    本题重点考查三视图的定义以及考查学生的空间想象能力.
    5、C
    【解析】
    由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
    【详解】
    解:∵x=-2和x=0时,y的值相等,
    ∴二次函数的对称轴为,
    故答案为:C.
    【点睛】
    本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
    6、B
    【解析】
    ∵点,是中点
    ∴点坐标
    ∵在双曲线上,代入可得

    ∵点在直角边上,而直线边与轴垂直
    ∴点的横坐标为-6
    又∵点在双曲线
    ∴点坐标为

    从而,故选B
    7、D
    【解析】
    利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
    由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
    ∴图象与x轴的另一个交点坐标为(-1,0).
    由图象可知:的解集即是y<0的解集,
    ∴x<-1或x>1.故选D.
    8、D
    【解析】
    a·a2= a3.
    故选D.
    9、D
    【解析】
    先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
    【详解】
    解:∵DE∥CA,DF∥BA,
    ∴四边形AEDF是平行四边形,选项①正确;
    若∠BAC=90°,
    ∴平行四边形AEDF为矩形,选项②正确;
    若AD平分∠BAC,
    ∴∠EAD=∠FAD,
    又DE∥CA,∴∠EDA=∠FAD,
    ∴∠EAD=∠EDA,
    ∴AE=DE,
    ∴平行四边形AEDF为菱形,选项③正确;
    若AB=AC,AD⊥BC,
    ∴AD平分∠BAC,
    同理可得平行四边形AEDF为菱形,选项④正确,
    则其中正确的个数有4个.
    故选D.
    【点睛】
    此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
    10、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    【点睛】
    考点:1、中心对称图形;2、轴对称图形

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、40°
    【解析】
    连接CD,则∠ADC=∠ABC=50°,
    ∵AD是⊙O的直径,
    ∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.
    12、2m
    【解析】
    本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.
    【详解】
    解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.

    在Rt△OAM中:OA=5m,AM=AB=4m.
    根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m.
    【点睛】
    圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.
    13、4π
    【解析】
    根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.
    14、2.1.
    【解析】
    根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.
    【详解】
    由题意可得,
    甲车到达C地用时4个小时,
    乙车的速度为:200÷(3.1﹣1)=80km/h,
    乙车到达A地用时为:(200+240)÷80+1=6.1(小时),
    当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),
    故答案为:2.1.
    【点睛】
    本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    15、2+
    【解析】
    试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
    ∵PE⊥AB,AB=2,半径为2,
    ∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
    ∵点A在直线y=x上,
    ∴∠AOC=45°,
    ∵∠DCO=90°,
    ∴∠ODC=45°,
    ∴△OCD是等腰直角三角形,
    ∴OC=CD=2,
    ∴∠PDE=∠ODC=45°,
    ∴∠DPE=∠PDE=45°,
    ∴DE=PE=1,
    ∴PD=
    ∵⊙P的圆心是(2,a),
    ∴a=PD+DC=2+.

    【点睛】
    本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
    16、(或)
    【解析】
    利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
    【详解】
    设无理数为,,所以x的取值在4~16之间都可,故可填
    【点睛】
    本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键

    三、解答题(共8题,共72分)
    17、(1)反比例函数表达式为,正比例函数表达式为;
    (2),.
    【解析】
    试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.
    试题解析:()把代入反比例函数表达式,
    得,解得,
    ∴反比例函数表达式为,
    把代入正比例函数,
    得,解得,
    ∴正比例函数表达式为.
    ()直线由直线向上平移个单位所得,
    ∴直线的表达式为,
    由,解得或,
    ∵在第四象限,
    ∴,
    连接,
    ∵,




    18、(1)详见解析;(2)30.
    【解析】
    (1)利用切线的性质得∠CEO=90°,再证明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根据切线的判定定理得到结论;
    (2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定△OBE为等边三角形,所以∠BOE=60°,然后利用互余可确定∠D的度数.
    【详解】
    (1)证明:∵CD与⊙O相切于点E,
    ∴OE⊥CD,
    ∴∠CEO=90°,
    又∵OC∥BE,
    ∴∠COE=∠OEB,∠OBE=∠COA
    ∵OE=OB,
    ∴∠OEB=∠OBE,
    ∴∠COE=∠COA,
    又∵OC=OC,OA=OE,
    ∴△OCA≌△OCE(SAS),
    ∴∠CAO=∠CEO=90°,
    又∵AB为⊙O的直径,
    ∴AC为⊙O的切线;
    (2)∵四边形FOBE是菱形,
    ∴OF=OB=BF=EF,
    ∴OE=OB=BE,
    ∴△OBE为等边三角形,
    ∴∠BOE=60°,
    而OE⊥CD,
    ∴∠D=30°.
    【点睛】
    本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
    19、(1)图形见解析;(2)1;(3)1.
    【解析】
    (1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;
    (2)根据众数的定义求解可得;
    (3)用总人数乘以样本中D和E人数占总人数的比例即可得.
    【详解】
    解:(1)∵被调查的总人数为20÷20%=100(人),
    则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),
    补全图形如下:

    (2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,
    故答案为1;
    (3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000× =1(人),
    故答案为1.
    【点睛】
    此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.
    20、,
    【解析】
    分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
    详解:原式=•﹣1
    =﹣
    =
    当x=+1时,原式==.
    点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    21、()cm.
    【解析】
    作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.
    【详解】
    如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,

    在中,∠BCD=60°,BC=60cm,
    ∴,
    在中,∠BAF=45°,AB=60cm,
    ∴,
    ∴D到L的距离.
    【点睛】
    本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.
    22、(1)证明见解析;(2)阴影部分面积为
    【解析】
    【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;
    (2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.
    【详解】(1)如图,连接OC,
    ∵OA=OC,
    ∴∠BAC=∠OCA,
    ∵∠BCD=∠BAC,
    ∴∠BCD=∠OCA,
    ∵AB是直径,
    ∴∠ACB=90°,
    ∴∠OCA+OCB=∠BCD+∠OCB=90°
    ∴∠OCD=90°
    ∵OC是半径,
    ∴CD是⊙O的切线
    (2)设⊙O的半径为r,
    ∴AB=2r,
    ∵∠D=30°,∠OCD=90°,
    ∴OD=2r,∠COB=60°
    ∴r+2=2r,
    ∴r=2,∠AOC=120°
    ∴BC=2,
    ∴由勾股定理可知:AC=2,
    易求S△AOC=×2×1=
    S扇形OAC=,
    ∴阴影部分面积为.

    【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.
    23、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析
    【解析】
    解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
    ,解得:。
    答:每台电脑0.5万元,每台电子白板1.5万元。
    (2)设需购进电脑a台,则购进电子白板(30-a)台,
    则,解得:,即a=15,16,17。
    故共有三种方案:
    方案一:购进电脑15台,电子白板15台.总费用为万元;
    方案二:购进电脑16台,电子白板14台.总费用为万元;
    方案三:购进电脑17台,电子白板13台.总费用为万元。
    ∴方案三费用最低。
    (1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。
    (2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。
    24、(1)k=2;(2)点D经过的路径长为.
    【解析】
    (1)根据题意求得点B的坐标,再代入求得k值即可;
    (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
    【详解】
    (1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
    ∴AB=OA=OC=OD=,
    ∴点B坐标为(,),
    代入得k=2;
    (2)设平移后与反比例函数图象的交点为D′,
    由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,

    ∵OC=OD=,∠AOB=∠COM=45°,
    ∴OM=MC=MD=1,
    ∴D坐标为(﹣1,1),
    设D′横坐标为t,则OE=MF=t,
    ∴D′F=DF=t+1,
    ∴D′E=D′F+EF=t+2,
    ∴D′(t,t+2),
    ∵D′在反比例函数图象上,
    ∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
    ∴D′(﹣1, +1),
    ∴DD′=,
    即点D经过的路径长为.
    【点睛】
    本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.

    相关试卷

    四川省广元市重点中学2022年中考五模数学试题含解析: 这是一份四川省广元市重点中学2022年中考五模数学试题含解析,共16页。试卷主要包含了2016的相反数是,点P等内容,欢迎下载使用。

    四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析,共20页。试卷主要包含了解分式方程时,去分母后变形为等内容,欢迎下载使用。

    2021-2022学年四川省广元市利州区重点中学中考二模数学试题含解析: 这是一份2021-2022学年四川省广元市利州区重点中学中考二模数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,4的平方根是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map