2022届四川省广元市青川县中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的( )
A. B.
C. D.
2.函数的图象上有两点,,若,则( )
A. B. C. D.、的大小不确定
3.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米
A. B. C. D.
4.一副直角三角板如图放置,其中,,,点F在CB的延长线上若,则等于( )
A.35° B.25° C.30° D.15°
5.用加减法解方程组时,若要求消去,则应( )
A. B. C. D.
6.cos45°的值是( )
A. B. C. D.1
7.下列计算错误的是( )
A.4x3•2x2=8x5 B.a4﹣a3=a
C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
8.一元二次方程x2-2x=0的解是( )
A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30° B.40° C.50° D.60°
10.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )
A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.
12.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
13.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.
14.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
15.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.
16.如图,在中,.的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为______.
17.关于的方程有增根,则______.
三、解答题(共7小题,满分69分)
18.(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
求楼间距AB;
若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,
19.(5分) (1)计算:
(2)先化简,再求值:,其中x是不等式的负整数解.
20.(8分)(1)|﹣2|+•tan30°+(2018﹣π)0-()-1
(2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.
21.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.
(1)请根据以上信息求出二次函数表达式;
(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
22.(10分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.
(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;
(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;
(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.
23.(12分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.
(1)求抛物线的解析式;
(2)点P为直线AC上方抛物线上一动点;
①连接PO,交AC于点E,求的最大值;
②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
24.(14分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
【详解】
解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
∴直线经过一、二、四象限,双曲线在二、四象限.
故选D.
【点睛】
本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
2、A
【解析】
根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.
【详解】
解:∵y=-1x1-8x+m,
∴此函数的对称轴为:x=-=-=-1,
∵x1<x1<-1,两点都在对称轴左侧,a<0,
∴对称轴左侧y随x的增大而增大,
∴y1<y1.
故选A.
【点睛】
此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.
3、A
【解析】
试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r﹣4)2,解得r=6.5
考点:垂径定理的应用.
4、D
【解析】
直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故选D.
【点睛】
此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.
5、C
【解析】
利用加减消元法消去y即可.
【详解】
用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
6、C
【解析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
【详解】
cos45°= .
故选:C.
【点睛】
本题考查特殊角的三角函数值.
7、B
【解析】
根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
【详解】
A选项:4x3•1x1=8x5,故原题计算正确;
B选项:a4和a3不是同类项,不能合并,故原题计算错误;
C选项:(-x1)5=-x10,故原题计算正确;
D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
故选:B.
【点睛】
考查了整式的乘法,关键是掌握整式的乘法各计算法则.
8、A
【解析】
试题分析:原方程变形为:x(x-1)=0
x1=0,x1=1.
故选A.
考点:解一元二次方程-因式分解法.
9、C
【解析】
试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
10、A
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
【详解】
解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
故侧面积=πrl=π×6×4=14πcm1.
故选:A.
【点睛】
此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据直角三角形的中点性质结合勾股定理解答即可.
【详解】
解:,点F是AD的中点,
.
故答案为: .
【点睛】
此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.
12、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
13、1:2
【解析】
△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.
【详解】
解:∵△ABC与△DEF是位似三角形,
∴DF∥AC,EF∥BC
∴△OAC∽△ODF,OE:OB=OF:OC
∴OF:OC=DF:AC
∵AC=3DF
∴OE:OB=DF:AC=1:3,
则OE:EB=1:2
故答案为:1:2
【点睛】
本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.
14、50.
【解析】
根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
【详解】
解:如图,米
,
设,则,
则,
解得,
故答案为:50.
【点睛】
本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
15、
【解析】
分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.
详解:∵关于x、y的二元一次方程组的解是,
∴将解代入方程组
可得m=﹣1,n=2
∴关于a、b的二元一次方程组整理为:
解得:
点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.
16、
【解析】
连接,根据勾股定理知,可得当时,即线段最短,然后由勾股定理即可求得答案.
【详解】
连接.
∵是的切线,
∴;
∴,
∴当时,线段OP最短,
∴PQ的长最短,
∵在中,,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到时,线段最短是关键.
17、-1
【解析】
根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.
故答案为-1.
点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.
三、解答题(共7小题,满分69分)
18、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【解析】
如图,作于M,于则,设想办法构建方程即可解决问题.
求出AC,AD,分两种情形解决问题即可.
【详解】
解:如图,作于M,于则,设.
在中,,
在中,,
,
,
,
的长为50m.
由可知:,
,,
,,
冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
【点睛】
考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
19、(1)5;(2),3.
【解析】
试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;
(2)先化简,再求得x的值,代入计算即可.
试题解析:
(1)原式=1-2+1×2+4=5;
(2)原式=×=,
当3x+7>1,即 x>-2时的负整数时,(x=-1)时,原式==3..
20、(1)-1(1)-1
【解析】
(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;
(1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.
【详解】
(1)原式=1+3×+1﹣5
=1++1﹣5
=﹣1;
(1)原式=
=
=
=﹣,
解不等式组得:-1≤x
则不等式组的整数解为﹣1、0、1、1,
∵x(x+1)≠0且x﹣1≠0,
∴x≠0且x≠±1,
∴x=1,
则原式=﹣=﹣1.
【点睛】
本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.
21、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.
【解析】
(1)利用二次函数解析式的顶点式求得结果即可;
(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.
【详解】
(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)
设二次函数表达式为:y=a(x﹣3)1﹣1.
∵该图象过A(1,0)
∴0=a(1﹣3)1﹣1,解得a=.
∴表达式为y=(x﹣3)1﹣1
(1)如图所示:
由已知条件可知直线与图形“G”要有三个交点
1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,
∴x3+x4+x5>11,
当直线过y=(x﹣3)1﹣1的图象顶点时,有1个交点,
由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)1+1,
∴令(x﹣3)1+1=﹣1时,解得x=3+1或x=3﹣1(舍去)
∴x3+x4+x5<9+1.
综上所述11<x3+x4+x5<9+1.
【点睛】
考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.
22、(1)见解析;(2)见解析;(3)AB=1
【解析】
(1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;
(2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;
(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.
【详解】
证明:(1)∵AB是⊙O的直径且AB⊥CD,
∴∠CPB=∠BCD,
∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,
∴∠BCP=∠PED;
(2)连接OP,则OP=OB,
∴∠OPB=∠OBP,
∵PF是⊙O的切线,
∴OP⊥PF,则∠OPF=90°,
∠FPE=90°﹣∠OPE,
∵∠PEF=∠HEB=90°﹣∠OBP,
∴∠FPE=∠FEP,
∵AB是⊙O的直径,
∴∠APB=90°,
∴∠APG+∠FPE=90°,
∴2∠APG+2∠FPE=180°,
∵∠F+∠FPE+∠PEF=180°,
∵∠F+2∠FPE=180°
∴2∠APG=∠F,
∴∠APG= ∠F;
(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,
由(2)知∠APB=∠AHE=90°,
∵AN=EN,
∴A、H、E、P四点共圆,
∴∠PAE=∠PHF,
∵PH=PF,
∴∠PHF=∠F,
∴∠PAE=∠F,
tan∠PAE=tan∠F,
∴,
由(2)知∠APB=∠G=∠PME=90°,
∴∠GAP=∠MPE,
∴sin∠GAP=sin∠MPE,
则,
∴,
∴MF=GP,
∵3PF=5PG,
∴,
设PG=3k,则PF=5k,MF=PG=3k,PM=2k
由(2)知∠FPE=∠PEF,
∴PF=EF=5k,
则EM=4k,
∴tan∠PEM=,tan∠F=,
∴tan∠PAE=,
∵PE=,
∴AP=k,
∵∠APG+∠EPM=∠EPM+∠PEM=90°,
∴∠APG=∠PEM,
∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,
∴∠APG=∠ABP,
∴∠PEM=∠ABP,
则tan∠ABP=tan∠PEM,即,
∴,
则BP=3k,
∴BE=k=2,
则k=2,
∴AP=3、BP=6,
根据勾股定理得,AB=1.
【点睛】
本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.
23、(1);(2)①有最大值1;②(2,3)或(,)
【解析】
(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
(2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
【详解】
(1)当x=0时,y=2,即C(0,2),
当y=0时,x=4,即A(4,0),
将A,C点坐标代入函数解析式,得
,
解得,
抛物线的解析是为;
(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N
,
∵直线PN∥y轴,
∴△PEM~△OEC,
∴
把x=0代入y=-x+2,得y=2,即OC=2,
设点P(x,-x2+x+2),则点M(x,-x+2),
∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
∴=,
∵0<x<4,∴当x=2时,=有最大值1.
②∵A(4,0),B(-1,0),C(0,2),
∴AC=2,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
∴D(,0),
∴DA=DC=DB=,
∴∠CDO=2∠BAC,
∴tan∠CDO=tan(2∠BAC)=,
过P作x轴的平行线交y轴于R,交AC的延长线于G,
情况一:如图
,
∴∠PCF=2∠BAC=∠PGC+∠CPG,
∴∠CPG=∠BAC,
∴tan∠CPG=tan∠BAC=,
即,
令P(a,-a2+a+2),
∴PR=a,RC=-a2+a,
∴,
∴a1=0(舍去),a2=2,
∴xP=2,-a2+a+2=3,P(2,3)
情况二,∴∠FPC=2∠BAC,
∴tan∠FPC=,
设FC=4k,
∴PF=3k,PC=5k,
∵tan∠PGC=,
∴FG=6k,
∴CG=2k,PG=3k,
∴RC=k,RG=k,PR=3k-k=k,
∴,
∴a1=0(舍去),a2=,
xP=,-a2+a+2=,即P(,),
综上所述:P点坐标是(2,3)或(,).
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
24、(1);(2)(0,)或(0,4).
【解析】
试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
(2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
(2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
考点:二次函数综合题.
2024年四川省广元市青川县中考三模数学试题: 这是一份2024年四川省广元市青川县中考三模数学试题,共16页。试卷主要包含了 下面给出了部分信息等内容,欢迎下载使用。
2023年四川省广元市利州区中考数学一模试卷(含解析): 这是一份2023年四川省广元市利州区中考数学一模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省广元市中考数学三模试卷(含解析): 这是一份2023年四川省广元市中考数学三模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。