2022届苏州高新区实验重点达标名校中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为( )
A.34° B.56° C.66° D.146°
2.下列命题中真命题是( )
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
3.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )
A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3
4.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
6.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )
A.小亮骑自行车的平均速度是12 km/h
B.妈妈比小亮提前0.5 h到达姥姥家
C.妈妈在距家12 km处追上小亮
D.9:30妈妈追上小亮
7.下列计算正确的是( )
A.a6÷a2=a3 B.(﹣2)﹣1=2
C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=1
8.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.30 B.40 C.60 D.80
9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75° B.60° C.55° D.45°
10.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )
A.4cm B.8cm C.(a+4)cm D.(a+8)cm
11.将(x+3)2﹣(x﹣1)2分解因式的结果是( )
A.4(2x+2) B.8x+8 C.8(x+1) D. 4(x+1)
12.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是( )
A.﹣1 B.±2 C.2 D.﹣2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.
14.已知∠=32°,则∠的余角是_____°.
15.已知图中的两个三角形全等,则∠1等于____________.
16.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.
17.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
18.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)综合与探究:
如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
(1)求二次函数的表达式;
(2)求点 A,B 的坐标;
(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.
20.(6分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.
求反比例函数的表达式;在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
21.(6分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
商品名称
甲
乙
进价(元/件)
40
90
售价(元/件)
60
120
设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,
①至少要购进多少件甲商品?
②若销售完这些商品,则商场可获得的最大利润是多少元?
22.(8分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.
发现:
(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
(2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
(1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
(2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
(3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
23.(8分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.
已知:如图,线段a,h.
求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.
24.(10分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.
(1)求证:AE是⊙O的切线;
(2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AG•AB=36,tanB=,求DF的值
25.(10分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
26.(12分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)
27.(12分)《九章算术》中有这样一道题,原文如下:
今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?
请解答上述问题.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.
详解:∵直线a∥b,∴∠2+∠BAD=180°.
∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.
故选B.
点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.
2、B
【解析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
3、A
【解析】
方程变形后,配方得到结果,即可做出判断.
【详解】
方程,
变形得:,
配方得:,即
故选A.
【点睛】
本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.
4、B
【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
【详解】
解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
∴抛物线与x轴的另一交点坐标为(1,1),
∴抛物线过原点,结论①正确;
②∵当x=﹣1时,y>1,
∴a﹣b+c>1,结论②错误;
③当x<1时,y随x增大而减小,③错误;
④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
∴c=1,
∴b=﹣4a,c=1,
∴4a+b+c=1,
当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤∵抛物线的顶点坐标为(2,b),
∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
综上所述,正确的结论有:①④⑤.
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
5、B
【解析】
解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
故选B.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
6、D
【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
【详解】
解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
∴小亮走的路程为:1×12=12km,
∴妈妈在距家12km出追上小亮,故正确;
D、由图象可知,当t=9时,妈妈追上小亮,故错误;
故选D.
【点睛】
本题考查函数图像的应用,从图像中读取关键信息是解题的关键.
7、D
【解析】
解:A.a6÷a2=a4,故A错误;
B.(﹣2)﹣1=﹣,故B错误;
C.(﹣3x2)•2x3=﹣6x5,故C错;
D.(π﹣3)0=1,故D正确.
故选D.
8、B
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM==a,
∴点A的坐标为(a,a).
∵点A在反比例函数y=的图象上,
∴a•a=a2=48,
解得:a=1,或a=-1(舍去).
∴AM=8,OM=6,OB=OA=1.
∵四边形OACB是菱形,点F在边BC上,
∴S△AOF=S菱形OBCA=OB•AM=2.
故选B.
【点睛】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
9、B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
【点睛】
本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
10、B
【解析】
【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
【详解】∵原正方形的周长为acm,
∴原正方形的边长为cm,
∵将它按图的方式向外等距扩1cm,
∴新正方形的边长为(+2)cm,
则新正方形的周长为4(+2)=a+8(cm),
因此需要增加的长度为a+8﹣a=8cm,
故选B.
【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
11、C
【解析】
直接利用平方差公式分解因式即可.
【详解】
(x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).
故选C.
【点睛】
此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
12、D
【解析】
根据一元二次方程根与系数的关系列出方程求解即可.
【详解】
设方程的两根分别为x1,x1,
∵x1+(k1-4)x+k-1=0的两实数根互为相反数,
∴x1+x1,=-(k1-4)=0,解得k=±1,
当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;
当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;
∴k=-1.
故选D.
【点睛】
本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=− ,x1x1= ,反过来也成立.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.
【详解】
:∵第1个正方形的面积为:1+4××2×1=5=51;
第2个正方形的面积为:5+4××2×=25=52;
第3个正方形的面积为:25+4××2×=125=53;
…
∴第n个正方形的面积为:5n;
∴第2018个正方形的面积为:1.
故答案为1.
【点睛】
本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.
14、58°
【解析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.
【详解】
解:∠α的余角是:90°-32°=58°.
故答案为58°.
【点睛】
本题考查余角,解题关键是掌握互为余角的两个角的和为90度.
15、58°
【解析】
如图,∠2=180°−50°−72°=58°,
∵两个三角形全等,
∴∠1=∠2=58°.
故答案为58°.
16、a≥﹣1且a≠1
【解析】
利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.
【详解】
根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.
故答案为a≥﹣1且a≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
17、①③④
【解析】
分析:根据两个向量垂直的判定方法一一判断即可;
详解:①∵2×(−1)+1×2=0,
∴与垂直;
②∵
∴与不垂直.
③∵
∴与垂直.
④∵
∴与垂直.
故答案为:①③④.
点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
18、
【解析】
试题解析:连接AE,
在Rt三角形ADE中,AE=4,AD=2,
∴∠DEA=30°,
∵AB∥CD,
∴∠EAB=∠DEA=30°,
∴的长度为:=.
考点:弧长的计算.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2);(3).
【解析】
(1)将点代入二次函数解析式即可;
(2)过点作轴,证明即可得到即可得出点 A,B 的坐标;
(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.
【详解】
解:(1)∵点在二次函数的图象上,
.
解方程,得
∴二次函数的表达式为.
(2)如图1,过点作轴,垂足为.
.
,
.
在和中,
∵,
.
∵点的坐标为 ,
.
.
(3)如图2,把沿轴正方向平移,
当点落在抛物线上点处时,设点的坐标为.
解方程得:(舍去)或
由平移的性质知,且,
∴四边形为平行四边形,
.
扫过区域的面积== .
【点睛】
本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.
20、(1);(2)P(,0);(3)E(,﹣1),在.
【解析】
(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;
(2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;
(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.
【详解】
(1)∵点A(,1)在反比例函数的图象上,
∴k=×1=,
∴反比例函数的表达式为;
(2)∵A(,1),AB⊥x轴于点C,
∴OC=,AC=1,由射影定理得=AC•BC,
可得BC=3,B(,﹣3),S△AOB=××4=,
∴S△AOP=S△AOB=.
设点P的坐标为(m,0),
∴×|m|×1=,
∴|m|=,
∵P是x轴的负半轴上的点,
∴m=﹣,
∴点P的坐标为(,0);
(3)点E在该反比例函数的图象上,理由如下:
∵OA⊥OB,OA=2,OB=,AB=4,
∴sin∠ABO===,
∴∠ABO=30°,
∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,
∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,
∴E(,﹣1),
∵×(﹣1)=,
∴点E在该反比例函数的图象上.
考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.
21、 (Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.
【解析】
(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.
【详解】
(Ⅰ)根据题意得:
则y与x的函数关系式为.
(Ⅱ),解得.
∴至少要购进20件甲商品.
,
∵,
∴y随着x的增大而减小
∴当时,有最大值,.
∴若售完这些商品,则商场可获得的最大利润是2800元.
【点睛】
本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.
22、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
【解析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
【详解】
发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,
∵⊙O的半径为2,AB=2,
∴OH==
在△BOH中,OH=1,BO=2
∴∠ABO=30°
∵图形沿BP折叠,得到点A的对称点A′.
∴∠OBA′=∠ABO=30°
∴∠ABA′=60°
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
∵∠OBH=30°,∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.∴OG=OB=1.∴BG=.
∵OG⊥BP,∴BG=PG=.
∴BP=2.∴折痕的长为2
拓展:(1)相切.
分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
∵A'C∥MN
∴四边形A'HOD是矩形
∴A'H=O
∵α=15°∴∠A'NH=30
∴OD=A'H=A'N=MN=2
∴A'C与半圆
(2)当NA′与半圆O相切时,则ON⊥NA′,
∴∠ONA′=2α=90°,
∴α=45
当O′在上时,连接MO′,则可知NO′=MN,
∴∠O′MN=0°
∴∠MNO′=60°,
∴α=30°,
故答案为:45°;30°.
(3)∵点P,M不重合,∴α>0,
由(2)可知当α增大到30°时,点O′在半圆上,
∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
∴α<90°,
∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
综上所述0°<α<30°或45°≤α<90°.
【点睛】
本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
23、见解析
【解析】
作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出△ABC.
【详解】
解:如图所示,△ABC即为所求.
【点睛】
考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.
24、(1)见解析;(2)4
【解析】
分析:(1)欲证明AE是⊙O切线,只要证明OA⊥AE即可;
(2)由△ACD∽△CFD,可得,想办法求出CD、AD即可解决问题.
详解:(1)证明:连接CD.
∵∠B=∠D,AD是直径,
∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,
∵∠B=∠EAC,
∴∠EAC+∠1=90°,
∴OA⊥AE,
∴AE是⊙O的切线.
(2)∵CG⊥AD.OA⊥AE,
∴CG∥AE,
∴∠2=∠3,
∵∠2=∠B,
∴∠3=∠B,
∵∠CAG=∠CAB,
∴△ABC∽△ACG,
∴,
∴AC2=AG•AB=36,
∴AC=6,
∵tanD=tanB=,
在Rt△ACD中,tanD==
CD==6,AD==6,
∵∠D=∠D,∠ACD=∠CFD=90°,
∴△ACD∽△CFD,
∴,
∴DF=4,
点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.
25、(1)详见解析(2)
【解析】
设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.
【详解】
(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:
由上图可知,上述试验共有8种等可能结果;
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.
∴P(一次打开锁)=.
【点睛】
如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
26、见解析
【解析】
先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.
【详解】
①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;
②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;
③连接AF,则直线AF即为∠ABC的角平分线;
⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;
⑥连接FH交BF于点M,则M点即为所求.
【点睛】
本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.
27、甲有钱,乙有钱.
【解析】
设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.
【详解】
解:设甲有钱,乙有钱.
由题意得: ,
解方程组得: ,
答:甲有钱,乙有钱.
【点睛】
本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.
2022年甘肃省高台县重点达标名校中考数学模拟预测题含解析: 这是一份2022年甘肃省高台县重点达标名校中考数学模拟预测题含解析,共23页。试卷主要包含了一、单选题,下列计算正确的是等内容,欢迎下载使用。
2022届浙江省台州仙居重点达标名校中考数学模拟预测题含解析: 这是一份2022届浙江省台州仙居重点达标名校中考数学模拟预测题含解析,共17页。试卷主要包含了在代数式 中,m的取值范围是等内容,欢迎下载使用。
2022届山西省高平市重点达标名校中考数学模拟预测题含解析: 这是一份2022届山西省高平市重点达标名校中考数学模拟预测题含解析,共27页。试卷主要包含了4的平方根是,在平面直角坐标系中,点,若,则等内容,欢迎下载使用。