|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析01
    2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析02
    2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022届天津市河北区重点达标名校初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了如图,将函数y=,下列命题是假命题的是,的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为( )

    A.1 B.2 C.3 D.6
    2.如果菱形的一边长是8,那么它的周长是(  )
    A.16 B.32 C.16 D.32
    3.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为(  )
    A.6 B.8 C.14 D.16
    4.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )

    A. B. C. D.π
    5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是(  )

    A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
    C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
    6.若一个三角形的两边长分别为5和7,则该三角形的周长可能是(  )
    A.12 B.14 C.15 D.25
    7.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    8.的绝对值是(  )
    A.8 B.﹣8 C. D.﹣
    9.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是  
    A.8 B.9 C.10 D.12
    10.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有(  )个.

    A.2 B.3 C.4 D.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在△ABC中,∠C=90°,若tanA=,则sinB=______.
    12.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.

    13.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):

    如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
    14.计算:=_____________.
    15.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN是等腰三角形,则∠B的度数为___________.
    16.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.

    三、解答题(共8题,共72分)
    17.(8分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:
    ① 教师讲,学生听
    ② 教师让学生自己做
    ③ 教师引导学生画图发现规律
    ④ 教师让学生对折纸,观察发现规律,然后画图
    为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图
    (1) 请将条形统计图补充完整;
    (2) 计算扇形统计图中方法③的圆心角的度数是 ;
    (3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?

    18.(8分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)

    19.(8分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.

    20.(8分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,.

    (1)求证:直线为的切线;
    (2)求证:;
    (3)若,,求的长.
    21.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
    (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    22.(10分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.
    (1)二月份冰箱每台售价为多少元?
    (2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?
    (3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?
    23.(12分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.

    24.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.
    【详解】

    解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),
    则B(c,b),E(c, ),
    设D(x,y),
    ∵D和E都在反比例函数图象上,
    ∴xy=k,
    即 ,
    ∵四边形ODBC的面积为3,


    ∴bc=4

    ∵k>0
    ∴ 解得k=2,
    故答案为:B.
    【点睛】
    本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.
    2、B
    【解析】
    根据菱形的四边相等,可得周长
    【详解】
    菱形的四边相等
    ∴菱形的周长=4×8=32
    故选B.
    【点睛】
    本题考查了菱形的性质,并灵活掌握及运用菱形的性质
    3、C
    【解析】
    根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.
    【详解】
    ∵一元二次方程x2-2x-5=0的两根是x1、x2,
    ∴x1+x2=2,x1•x2=-5,
    ∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.
    故选C.
    【点睛】
    考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1•x2= .
    4、A
    【解析】
    试题解析:如图,
    ∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
    ∴BC=ACtan60°=1×=,AB=2
    ∴S△ABC=AC•BC=.
    根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
    ∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
    =
    =.
    故选A.
    考点:1.扇形面积的计算;2.旋转的性质.
    5、D
    【解析】
    ∵函数的图象过点A(1,m),B(4,n),
    ∴m==,n==3,
    ∴A(1,),B(4,3),
    过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
    ∴AC=4﹣1=3,
    ∵曲线段AB扫过的面积为9(图中的阴影部分),
    ∴AC•AA′=3AA′=9,
    ∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
    ∴新图象的函数表达式是.
    故选D.

    6、C
    【解析】
    先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
    【详解】
    ∴三角形的两边长分别为5和7,
    ∴2<第三条边<12,
    ∴5+7+2<三角形的周长<5+7+12,
    即14<三角形的周长<24,
    故选C.
    【点睛】
    本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.
    7、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    8、C
    【解析】
    根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
    ①当a是正有理数时,a的绝对值是它本身a;
    ②当a是负有理数时,a的绝对值是它的相反数﹣a;
    ③当a是零时,a的绝对值是零.
    【详解】
    解:.
    故选
    【点睛】
    此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
    9、A
    【解析】
    试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.
    解:设这个多边形的外角为x°,则内角为3x°,
    由题意得:x+3x=180,
    解得x=45,
    这个多边形的边数:360°÷45°=8,
    故选A.
    考点:多边形内角与外角.
    10、C
    【解析】
    根据AF是∠BAC的平分线,BH⊥AF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG=EB,FG=FB,即可判定②选项;设OA=OB=OC=a,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CF=GF=BF,由四边形ABCD是正方形和角度转换证明△OAE≌△OBG,即可判定①;则△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的关系式,再由△PGC∽△BGA,得到=1+,从而判断得出④;得出∠EAB=∠GBC从而证明△EAB≌△GBC,即可判定③;证明△FAB≌△PBC得到BF=CP,即可求出,从而判断⑤.
    【详解】
    解:∵AF是∠BAC的平分线,
    ∴∠GAH=∠BAH,
    ∵BH⊥AF,
    ∴∠AHG=∠AHB=90°,
    在△AHG和△AHB中

    ∴△AHG≌△AHB(ASA),
    ∴GH=BH,
    ∴AF是线段BG的垂直平分线,
    ∴EG=EB,FG=FB,
    ∵四边形ABCD是正方形,
    ∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,
    ∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,
    ∴∠BEF=∠BFE,
    ∴EB=FB,
    ∴EG=EB=FB=FG,
    ∴四边形BEGF是菱形;②正确;
    设OA=OB=OC=a,菱形BEGF的边长为b,
    ∵四边形BEGF是菱形,
    ∴GF∥OB,
    ∴∠CGF=∠COB=90°,
    ∴∠GFC=∠GCF=45°,
    ∴CG=GF=b,∠CGF=90°,
    ∴CF=GF=BF,
    ∵四边形ABCD是正方形,
    ∴OA=OB,∠AOE=∠BOG=90°,
    ∵BH⊥AF,
    ∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
    ∴∠OAE=∠OBG,
    在△OAE和△OBG中

    ∴△OAE≌△OBG(ASA),①正确;
    ∴OG=OE=a﹣b,
    ∴△GOE是等腰直角三角形,
    ∴GE=OG,
    ∴b=(a﹣b),
    整理得a=b,
    ∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,
    ∵四边形ABCD是正方形,
    ∴PC∥AB,
    ∴===1+,
    ∵△OAE≌△OBG,
    ∴AE=BG,
    ∴=1+,
    ∴==1﹣,④正确;
    ∵∠OAE=∠OBG,∠CAB=∠DBC=45°,
    ∴∠EAB=∠GBC,
    在△EAB和△GBC中

    ∴△EAB≌△GBC(ASA),
    ∴BE=CG,③正确;
    在△FAB和△PBC中

    ∴△FAB≌△PBC(ASA),
    ∴BF=CP,
    ∴====,⑤错误;
    综上所述,正确的有4个,
    故选:C.
    【点睛】
    本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
    详解:如图所示:

    ∵∠C=90°,tanA=,
    ∴设BC=x,则AC=2x,故AB=x,
    则sinB=.
    故答案为: .
    点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
    12、-2 【解析】
    根据图象可直接得到y1>y2>0时x的取值范围.
    【详解】
    根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,
    故答案为﹣2<x<﹣0.5.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
    13、乙 乙的比赛成绩比较稳定.
    【解析】
    观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
    【详解】
    观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
    所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
    故答案为乙,乙的比赛成绩比较稳定.
    【点睛】
    本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    14、
    【解析】
    分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.
    详解:
    原式=.
    故答案为:.
    点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.
    15、或.
    【解析】
    MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.
    解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,

    ∴MN是AB的中垂线.
    ∴NB=NA.
    ∴∠B=∠BAN,
    ∵AB=AC
    ∴∠B=∠C.
    设∠B=x°,则∠C=∠BAN=x°.
    1)当AN=NC时,∠CAN=∠C=x°.
    则在△ABC中,根据三角形内角和定理可得:4x=180,
    解得:x=45°则∠B=45°;
    2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;
    3)当CA=CN时,∠NAC=∠ANC=.
    在△ABC中,根据三角形内角和定理得到:x+x+x+=180,
    解得:x=36°.
    故∠B的度数为 45°或36°.
    16、(3,2).
    【解析】
    根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.
    【详解】
    解:如图所示:∵A(0,a),
    ∴点A在y轴上,
    ∵C,D的坐标分别是(b,m),(c,m),
    ∴B,E点关于y轴对称,
    ∵B的坐标是:(﹣3,2),
    ∴点E的坐标是:(3,2).
    故答案为:(3,2).

    【点睛】
    此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.

    三、解答题(共8题,共72分)
    17、解:(1)见解析; (2) 108°;(3) 最喜欢方法④,约有189人.
    【解析】
    (1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);
    (2)求方法③的圆心角应先求所占比值,再乘以360°;
    (3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;
    【详解】
    (1)方法②人数为60−6−18−27=9(人);
    补条形图如图:

    (2)方法③的圆心角为
    故答案为108°
    (3)由图可以看出喜欢方法④的学生最多,人数为 (人);
    【点睛】
    考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.
    18、古塔AB的高为(10+2)米.
    【解析】
    试题分析:延长EF交AB于点G.利用AB表示出EG,AC.让EG-AC=1即可求得AB长.
    试题解析:如图,延长EF交AB于点G.

    设AB=x米,则BG=AB﹣2=(x﹣2)米.
    则EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.
    则CD=EG﹣AC=(x﹣2)﹣x=1.
    解可得:x=10+2.
    答:古塔AB的高为(10+2)米.
    19、这栋高楼的高度是
    【解析】
    过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
    【详解】
    过点A作AD⊥BC于点D,

    依题意得,,,AD=120,
    在Rt△ABD中,
    ∴,
    在Rt△ADC中,
    ∴,
    ∴ ,
    答:这栋高楼的高度是.
    【点睛】
    本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
    20、(1)证明见解析;(2)证明见解析;(3)1.
    【解析】
    (1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;
    (2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
    【详解】
    (1)连接OB,

    ∵PB是⊙O的切线,
    ∴∠PBO=90°.
    ∵OA=OB,BA⊥PO于D,
    ∴AD=BD,∠POA=∠POB.
    又∵PO=PO,
    ∴△PAO≌△PBO.
    ∴∠PAO=∠PBO=90°,
    ∴直线PA为⊙O的切线.
    (2)由(1)可知,,


    =90,


    ,即,
    是直径,
    是半径



    整理得;
    (3)是中点,是中点,
    是的中位线,



    是直角三角形,
    在中,,



    ,则,
    、是半径,

    在中,,,
    由勾股定理得:
    ,即,
    解得:或(舍去),


    【点睛】
    本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.
    21、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2)
    【解析】
    解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).
    ∵抛物线y=-x2+bx+c经过A、B两点,
    ∴,解得.
    ∴抛物线解析式为y=-x2-2x+1.
    令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,
    ∴C(1,0).
    (2)如图1,
    设D(t,0).
    ∵OA=OB,∴∠BAO=15°.
    ∴E(t,t+1),P(t,-t2-2t+1).
    PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.
    ∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).
    (2)存在.如图2,过N点作NH⊥x轴于点H.
    设OH=m(m>0),∵OA=OB,∴∠BAO=15°.
    ∴NH=AH=1-m,∴yQ=1-m.
    又M为OA中点,∴MH=2-m.
    当△MON为等腰三角形时:
    ①若MN=ON,则H为底边OM的中点,
    ∴m=1,∴yQ=1-m=2.
    由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ②若MN=OM=2,则在Rt△MNH中,
    根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,
    化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).
    ∴yQ=2,由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ③若ON=OM=2,则在Rt△NOH中,
    根据勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,
    化简得m2-1m+6=0,∵△=-8<0,
    ∴此时不存在这样的直线l,使得△MON为等腰三角形.
    综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2).
    (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.
    (2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.
    (2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标. “△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.
    22、(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.
    【解析】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.
    【详解】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,
    根据题意,得: =,
    解得:x=4000,
    经检验,x=4000是原方程的根.
    答:二月份冰箱每台售价为4000元.
    (2)根据题意,得:3500y+4000(20﹣y)≤76000,
    解得:y≥3,
    ∵y≤2且y为整数,
    ∴y=3,9,10,11,2.
    ∴洗衣机的台数为:2,11,10,9,3.
    ∴有五种购货方案.
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,
    根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,
    ∵(2)中的各方案利润相同,
    ∴1﹣a=0,
    ∴a=1.
    答:a的值为1.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.
    23、 (1) AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3) (3,4)或(5,2)或(3,2).
    【解析】
    试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;
    (2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;
    (3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.
    试题解析:(1)∵y=-x+b经过A(0,1),
    ∴b=1,
    ∴直线AB的解析式是y=-x+1.
    当y=0时,0=-x+1,解得x=3,
    ∴点B(3,0).
    (2)过点A作AM⊥PD,垂足为M,则有AM=1,

    ∵x=1时,y=-x+1=,P在点D的上方,
    ∴PD=n-,S△APD=PD•AM=×1×(n-)=n-
    由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
    ∴S△BPD=PD×2=n-,
    ∴S△PAB=S△APD+S△BPD=n-+n-=n-1;
    (3)当S△ABP=2时,n-1=2,解得n=2,
    ∴点P(1,2).
    ∵E(1,0),
    ∴PE=BE=2,
    ∴∠EPB=∠EBP=45°.
    第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.

    ∵∠CPB=90°,∠EPB=45°,
    ∴∠NPC=∠EPB=45°.
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△BEP,
    ∴PN=NC=EB=PE=2,
    ∴NE=NP+PE=2+2=4,
    ∴C(3,4).
    第2种情况,如图2∠PBC=90°,BP=BC,

    过点C作CF⊥x轴于点F.
    ∵∠PBC=90°,∠EBP=45°,
    ∴∠CBF=∠PBE=45°.
    又∵∠CFB=∠PEB=90°,BC=BP,
    ∴△CBF≌△PBE.
    ∴BF=CF=PE=EB=2,
    ∴OF=OB+BF=3+2=5,
    ∴C(5,2).
    第3种情况,如图3,∠PCB=90°,CP=EB,

    ∴∠CPB=∠EBP=45°,
    在△PCB和△PEB中,

    ∴△PCB≌△PEB(SAS),
    ∴PC=CB=PE=EB=2,
    ∴C(3,2).
    ∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).
    考点:一次函数综合题.
    24、(1)10米;(2)11.4米
    【解析】
    (1)延长DC交AN于H.只要证明BC=CD即可;
    (2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题.
    【详解】
    (1)如图,延长DC交AN于H,

    ∵∠DBH=60°,∠DHB=90°,
    ∴∠BDH=30°,
    ∵∠CBH=30°,
    ∴∠CBD=∠BDC=30°,
    ∴BC=CD=10(米);
    (2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
    ∴DH=15,
    在Rt△ADH中,AH=≈=20,
    ∴AB=AH﹣BH=20﹣8.65=11.4(米).
    【点睛】
    本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

    相关试卷

    天津市河北区重点达标名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份天津市河北区重点达标名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了已知,代数式的值为等内容,欢迎下载使用。

    安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,下列说法中不正确的是,某班7名女生的体重等内容,欢迎下载使用。

    2022届浙江省绍兴县重点达标名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届浙江省绍兴县重点达标名校初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,如图,将△ABC绕点C等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map