2022届无锡市南长区重点达标名校中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
A. B. C. D.
2.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
3.关于x的不等式组的所有整数解是( )
A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2
4.某班 30名学生的身高情况如下表:
身高
人数
1
3
4
7
8
7
则这 30 名学生身高的众数和中位数分别是
A., B.,
C., D.,
5.若a与﹣3互为倒数,则a=( )
A.3 B.﹣3 C. D.-
6.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为( )
A.米 B.30sinα米 C.30tanα米 D.30cosα米
7.如图,在中,边上的高是( )
A. B. C. D.
8.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
9.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第二、三、四象限 D.第一、三、四象限
10.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是( )
A.30° B.45° C.50° D.60°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=_____.
12.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.
13.在Rt△ABC中,∠A是直角,AB=2,AC=3,则BC的长为_____.
14.菱形ABCD中,,其周长为32,则菱形面积为____________.
15.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______
16.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.
三、解答题(共8题,共72分)
17.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.
18.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
19.(8分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)当点R与点B重合时,求t的值;
(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;
(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.
20.(8分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.
21.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:
根据统计图所提供的倍息,解答下列问题:
(1)本次抽样调查中的学生人数是多少人;
(2 )补全条形统计图;
(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.
22.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
23.(12分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
24.2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;
求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.
【详解】
根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,
A、,错误;
B、,错误;
C、,错误;
D、,正确;
故选D.
【点睛】
本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.
2、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
3、B
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.
【详解】
解不等式﹣2x<4,得:x>﹣2,
解不等式3x﹣5<1,得:x<2,
则不等式组的解集为﹣2<x<2,
所以不等式组的整数解为﹣1、0、1,
故选:B.
【点睛】
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
4、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.
【点睛】
本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
5、D
【解析】
试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
∴a=,
故选C.
考点:倒数.
6、C
【解析】
试题解析:在Rt△ABO中,
∵BO=30米,∠ABO为α,
∴AO=BOtanα=30tanα(米).
故选C.
考点:解直角三角形的应用-仰角俯角问题.
7、D
【解析】
根据三角形的高线的定义解答.
【详解】
根据高的定义,AF为△ABC中BC边上的高.
故选D.
【点睛】
本题考查了三角形的高的定义,熟记概念是解题的关键.
8、D
【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
【详解】
解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
故选D.
【点睛】
本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
9、A
【解析】
由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.
【详解】
解:观察函数图象,可知:m>0,n>0,
∴一次函数y=mx+n的图象经过第一、二、三象限.
故选A.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.
10、D
【解析】
根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.
则sinD=
∠D=60°
∠B=∠D=60°.
故选D.
“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据白球的概率公式=列出方程求解即可.
【详解】
不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,
根据古典型概率公式知:P(白球)==.
解得:n=1,
故答案为1.
【点睛】
此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12、
【解析】
第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.
【详解】
解:∵菱形ABCD中,AB=4,∠C=60°,
∴△ABD是等边三角形, BO=DO=2,
AO==,
第一次旋转的弧长=,
∵第一、二次旋转的弧长和=+=,
第三次旋转的弧长为:,
故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=.
故答案为:.
【点睛】
本题考查菱形的性质,翻转的性质以及解直角三角形的知识.
13、
【解析】
根据勾股定理解答即可.
【详解】
∵在Rt△ABC中,∠A是直角,AB=2,AC=3,
∴BC===,
故答案为:
【点睛】
此题考查勾股定理,关键是根据勾股定理解答.
14、
【解析】
分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.
详解:∵菱形ABCD中,其周长为32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD为等边三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根据勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面积为:=.
点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.
15、
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
由图象可知:抛物线开口方向向下,则,
对称轴直线位于y轴右侧,则a、b异号,即,
抛物线与y轴交于正半轴,则,,故正确;
对称轴为,,故正确;
由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,
所以当时,,即,故正确;
抛物线与x轴有两个不同的交点,则,所以,故错误;
当时,,故正确.
故答案为.
【点睛】
本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
16、6
【解析】
点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;
【详解】
解:点P在以O为圆心OA为半径的圆上,
∴P是两个圆的交点,
当⊙O与⊙M外切时,AB最小,
∵⊙M的半径为2,圆心M(3,4),
∴PM=5,
∴OA=3,
∴AB=6,
故答案为6;
【点睛】
本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.
三、解答题(共8题,共72分)
17、(1)见解析(2)见解析
【解析】
(1)根据旋转变换的定义和性质求解可得;
(2)根据位似变换的定义和性质求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△DEF即为所求.
【点睛】
本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.
18、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,
即∠APC=∠BPD,
在△APC和△BPD中,
∵AP=PB,∠APC=∠BPD,PC=PD,
∴△APC≌△BPD,
∴AC=BD.
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)四边形EFGH是正方形.
证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
考点:平行四边形的判定与性质;中点四边形.
19、(1);(2)(9﹣t);(3)①S =﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.
【解析】
(1)根据题意点R与点B重合时t+t=3,即可求出t的值;
(2)根据题意运用t表示出PQ即可;
(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;
(3)根据等腰三角形的性质即可得出结论.
【详解】
解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,
∴PQ=PR,∠QPR=90°,
∴△QPR为等腰直角三角形.
当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.
∵点R与点B重合,
∴AP+PR=t+t=AB=3,
解得:t=.
(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,
∵tanA=,
∴tanC=,sinC=,
∴PQ=CP•sinC=(9﹣t).
(3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.
∵△KBR∽△QAR,
∴ =,
∴ =,
∴KM=(t﹣3)=t﹣,
∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.
②如图2中,当3<t≤3时,重叠部分是四边形PQKB.
S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.
③如图3中,当3<t<9时,重叠部分是△PQK.
S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.
(3)如图3中,
①当DC=DP1=3时,易知AP1=3,t=3.
②当DC=DP2时,CP2=2•CD•,
∴BP2=,
∴t=3+.
③当CD=CP3时,t=4.
④当CP3=DP3时,CP3=2÷,
∴t=9﹣=.
综上所述,满足条件的t的值为3或或4或.
【点睛】
本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
20、 (1);(2)m=﹣.
【解析】
(1)根据已知和根的判别式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;
(2)根据根与系数的关系得出x1+x2=﹣2,x1•x2=2m,把x1+xx12+x22﹣x1x2=8变形为(x1+x2)2﹣3x1x2=8,代入求出即可.
【详解】
(1)∵关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,
∴△=22﹣4×1×2m=4﹣8m>0,
解得:
即m的取值范围是
(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,
∴x1+x2=﹣2,x1•x2=2m,
∵x12+x22﹣x1x2=8,
∴(x1+x2)2﹣3x1x2=8,
∴(﹣2)2﹣3×2m=8,
解得:
【点睛】
本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键.
21、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
【解析】
(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
(3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
【详解】
(1)30÷30%=100,
所以本次抽样调查中的学生人数为100人;
(2)选”舞蹈”的人数为100×10%=10(人),
选“打球”的人数为100﹣30﹣10﹣20=40(人),
补全条形统计图为:
(3)2000×=800,
所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
(4)画树状图为:
共有12种等可能的结果数,其中选到一男一女的结果数为8,
所以选到一男一女的概率=.
【点睛】
本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.
22、(1)y=-(x-3)2+5(2)5
【解析】
(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
【详解】
(1)设此抛物线的表达式为y=a(x-3)2+5,
将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
∴此抛物线的表达式为
(2)∵A(1,3),抛物线的对称轴为直线x=3,
∴B(5,3).
令x=0,则
∴△ABC的面积
【点睛】
考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
23、
【解析】
过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.
【详解】
解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PD•tan∠BPD=PD•tan26.6°.
在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,
∴CD=PD•tan∠CPD=PD•tan37°.
∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.
∴0.75PD﹣0.50PD=1,解得PD=2.
∴BD=PD•tan26.6°≈2×0.50=3.
∵OB=220,∴PE=OD=OB﹣BD=4.
∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.
∴.
24、(1)一共调查了300名学生.
(2)
(3)体育部分所对应的圆心角的度数为48°.
(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.
【解析】
(1)用文学的人数除以所占的百分比计算即可得解.
(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.
(3)用体育所占的百分比乘以360°,计算即可得解.
(4)用总人数乘以科普所占的百分比,计算即可得解.
【详解】
解:(1)∵90÷30%=300(名),
∴一共调查了300名学生.
(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.
补全折线图如下:
(3)体育部分所对应的圆心角的度数为:×360°=48°.
(4)∵1800×=1(名),
∴1800名学生中估计最喜爱科普类书籍的学生人数为1.
2022年无锡市南长区重点达标名校中考联考数学试卷含解析: 这是一份2022年无锡市南长区重点达标名校中考联考数学试卷含解析,共18页。试卷主要包含了若分式有意义,则a的取值范围为等内容,欢迎下载使用。
2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析: 这是一份2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,如图,一段抛物线等内容,欢迎下载使用。
2022年江苏省姜堰区重点达标名校中考一模数学试题含解析: 这是一份2022年江苏省姜堰区重点达标名校中考一模数学试题含解析,共19页。试卷主要包含了下列实数中,最小的数是,下列运算正确的是等内容,欢迎下载使用。