


2022届武汉市重点中学中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 的相反数是( )
A.﹣ B. C. D.2
2.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
3.据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为
A.元 B.元 C.元 D.元
4.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
D.两个角互为邻补角
5.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①② B.②③ C.①③ D.②④
7.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )
A.点A B.点B C.点C D.点D
8.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )
A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟70米
C.小明在上述过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
9.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
10.一个多边形内角和是外角和的2倍,它是( )
A.五边形 B.六边形 C.七边形 D.八边形
11.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )
A.4 B.6 C.16π D.8
12.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.
14.函数y=中自变量x的取值范围是___________.
15.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为___.
16.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O到点O′所经过的路径长为_____.
17.一个圆锥的侧面展开图是半径为8 cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.
18.已知:如图,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y= (x>0)的图象经过点B.
(1)求点B的坐标和反比例函数的关系式;
(2)如图2,将线段OA延长交y= (x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.
20.(6分)如图,在⊿中,,于, .
⑴.求的长;
⑵.求 的长.
21.(6分)计算:×(2﹣)﹣÷+.
22.(8分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
(1)⊙O的半径为6,OP=1.
①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.
23.(8分)有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后, 能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.
例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;
再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.
(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.
(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.
24.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.
25.(10分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).
(1)求二次函数图象的对称轴;
(2)当﹣4≤x≤1时,求y的取值范围.
26.(12分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为2.
求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.
27.(12分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站
A
B
C
D
E
X(千米)
8
9
10
11.5
13
(分钟)
18
20
22
25
28
(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
分析:
根据相反数的定义结合实数的性质进行分析判断即可.
详解:
的相反数是.
故选A.
点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键.
2、C
【解析】
列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.
【详解】
画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为.
故选C.
3、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
亿=115956000000,
所以亿用科学记数法表示为1.15956×1011,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、C
【解析】
熟记反证法的步骤,然后进行判断即可.
解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
D、由于无法说明两角具体的大小关系,故D错误.
故选C.
5、B
【解析】
根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④.
【详解】
由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;
观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;
观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;
观察图象可得,当x>2时,的值随值的增大而增大,④错误.
综上,正确的结论有2个.
故选B.
【点睛】
本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
6、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
7、B
【解析】
试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.
8、C
【解析】
根据图像,结合行程问题的数量关系逐项分析可得出答案.
【详解】
从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;
小明休息前爬山的平均速度为:(米/分),B正确;
小明在上述过程中所走的路程为3800米,C错误;
小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.
故选C.
考点:函数的图象、行程问题.
9、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
10、B
【解析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
【详解】
设这个多边形是n边形,根据题意得:
(n﹣2)×180°=2×310°
解得:n=1.
故选B.
【点睛】
本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
11、A
【解析】
由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.
【详解】
解:由题意知:底面周长=8π,
∴底面半径=8π÷2π=1.
故选A.
【点睛】
此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.
12、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,
∴AC=1cm.
考点:1轴对称;2矩形的性质;3等腰三角形.
14、x≥﹣且x≠1
【解析】
试题解析:根据题意得:
解得:x≥﹣且x≠1.
故答案为:x≥﹣且x≠1.
15、
【解析】
延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值
【详解】
延长GF与CD交于点D,过点E作交DF于点M,
设正方形的边长为,则
,
故答案为:
【点睛】
考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.
16、
【解析】
点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.
【详解】
解:∵扇形OAB的圆心角为30°,半径为1,
∴AB弧长=
∴点O到点O′所经过的路径长=
故答案为:
【点睛】
本题考查了弧长公式:.也考查了旋转的性质和圆的性质.
17、cm
【解析】
试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,
根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=, r=cm.
考点:圆锥侧面展开扇形与底面圆之间的关系
18、2﹣π.
【解析】
试题分析:根据题意可得:∠O=2∠A=60°,则△OBC为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=,,则.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2
【解析】
试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;
(2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; ②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.
试题解析:(1)过点A作AP⊥x轴于点P,
则AP=1,OP=2,
又∵AB=OC=3,
∴B(2,4).,
∵反比例函数y= (x>0)的图象经过的B,
∴4=,
∴k=8.
∴反比例函数的关系式为y=;
(2)①由点A(2,1)可得直线OA的解析式为y=x.
解方程组,得,.
∵点D在第一象限,
∴D(4,2).
由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;
②把y=0代入y=-x+6,解得x=6,
∴E(6,0),
过点D分别作x轴的垂线,垂足分别为G,则G(4,0),
由勾股定理可得:ED=.
点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.
20、(1)25(2)12
【解析】
整体分析:
(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.
解:(1).∵在⊿中,,.
∴,
(2).∵⊿,
∴即,
∴20×15=25CD.
∴.
21、5-
【解析】
分析:先化简各二次根式,再根据混合运算顺序依次计算可得.
详解:原式=3×(2-)-+
=6--+
=5-
点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.
22、(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O的“幂值”为r2﹣d2;(3)﹣3≤b≤.
【解析】
【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;
②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;
(2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;
(3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.
【详解】(1)①如图1所示:连接OA、OB、OP,
∵OA=OB,P为AB的中点,
∴OP⊥AB,
∵在△PBO中,由勾股定理得:PB==2,
∴PA=PB=2,
∴⊙O的“幂值”=2×2=20,
故答案为:20;
②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:
如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,
∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,
∴△APA′∽△B′PB,
∴,
∴PA•PB=PA′•PB′=20,
∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;
(2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,
∵AO=OB,PO⊥AB,
∴AP=PB,
∴点P关于⊙O的“幂值”=AP•PB=PA2,
在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,
∴关于⊙O的“幂值”=r2﹣d2,
故答案为:点P关于⊙O的“幂值”为r2﹣d2;
(3)如图1所示:过点C作CP⊥AB,
,
∵CP⊥AB,AB的解析式为y=x+b,
∴直线CP的解析式为y=﹣x+.
联立AB与CP,得,
∴点P的坐标为(﹣﹣b,+b),
∵点P关于⊙C的“幂值”为6,
∴r2﹣d2=6,
∴d2=3,即(﹣﹣b)2+(+b)2=3,
整理得:b2+2b﹣9=0,
解得b=﹣3或b=,
∴b的取值范围是﹣3≤b≤,
故答案为:﹣3≤b≤.
【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.
23、 (1)见解析;(2) 201,207,1
【解析】
试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;
(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可.
试题解析:
(1)设两位自然数的十位数字为x,则个位数字为2x,
∴这个两位自然数是10x+2x=12x,
∴这个两位自然数是12x能被6整除,
∵依次轮换个位数字得到的两位自然数为10×2x+x=21x
∴轮换个位数字得到的两位自然数为21x能被7整除,
∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.
(2)∵三位自然数是3的一个“轮换数”,且a=2,
∴100a+10b+c能被3整除,
即:10b+c+200能被3整除,
第一次轮换得到的三位自然数是100b+10c+a能被4整除,
即100b+10c+2能被4整除,
第二次轮换得到的三位自然数是100c+10a+b能被5整除,
即100c+b+20能被5整除,
∵100c+b+20能被5整除,
∴b+20的个位数字不是0,便是5,
∴b=0或b=5,
当b=0时,
∵100b+10c+2能被4整除,
∴10c+2能被4整除,
∴c只能是1,3,5,7,9;
∴这个三位自然数可能是为201,203,205,207,209,
而203,205,209不能被3整除,
∴这个三位自然数为201,207,
当b=5时,∵100b+10c+2能被4整除,
∴10c+502能被4整除,
∴c只能是1,5,7,9;
∴这个三位自然数可能是为251,1,257,259,
而251,257,259不能被3整除,
∴这个三位自然数为1,
即这个三位自然数为201,207,1.
【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值.
24、(1)见解析(2)6
【解析】
(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.
(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.
【详解】
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC
∴∠C+∠B=110°,∠ADF=∠DEC
∵∠AFD+∠AFE=110°,∠AFE=∠B,
∴∠AFD=∠C
在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,
∴△ADF∽△DEC
(2)∵四边形ABCD是平行四边形,
∴CD=AB=1.
由(1)知△ADF∽△DEC,
∴,
∴
在Rt△ADE中,由勾股定理得:
25、(1)x=-1;(2)﹣6≤y≤1;
【解析】
(1)根据抛物线的对称性和待定系数法求解即可;
(2)根据二次函数的性质可得.
【详解】
(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,
可得:1﹣2m+5m=﹣2,
解得:m=﹣1,
所以二次函数y=x2﹣2mx+5m的对称轴是x=,
(2)∵y=x2+2x﹣5=(x+1)2﹣6,
∴当x=﹣1时,y取得最小值﹣6,
由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,
∴当﹣4≤x≤1时,﹣6≤y≤1.
【点睛】
本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.
26、(2)(2)7或2.
【解析】
试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;
(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.
试题解析:(2)∵△AOM的面积为2,
∴|k|=2,
而k>0,
∴k=6,
∴反比例函数解析式为y=;
(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,
把x=2代入y=得y=6,
∴M点坐标为(2,6),
∴AB=AM=6,
∴t=2+6=7;
当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,
则AB=BC=t-2,
∴C点坐标为(t,t-2),
∴t(t-2)=6,
整理为t2-t-6=0,解得t2=2,t2=-2(舍去),
∴t=2,
∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2.
考点:反比例函数综合题.
27、 (1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.
【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.
【详解】
(1)设y1=kx+b,将(8,18),(9,20),代入
y1=kx+b,得:
解得
所以y1关于x的函数解析式为y1=2x+2.
(2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
所以当x=9时,y取得最小值,最小值为39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
【点睛】
本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
武汉市汉阳区重点中学2022年中考三模数学试题含解析: 这是一份武汉市汉阳区重点中学2022年中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,sin60°的值为等内容,欢迎下载使用。
2022年重点中学中考数学五模试卷含解析: 这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。
2022年湖北省武汉市蔡甸区誉恒联盟重点中学中考二模数学试题含解析: 这是一份2022年湖北省武汉市蔡甸区誉恒联盟重点中学中考二模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。