2022届西藏自治区工布江达县市级名校中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.四个有理数﹣1,2,0,﹣3,其中最小的是( )
A.﹣1 B.2 C.0 D.﹣3
2.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
3.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为( )
A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×108
4.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是( )
A.3 B.﹣ C.﹣3 D.﹣6
5.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是
A. B. C. D.
6.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
7.的相反数是
A.4 B. C. D.
8.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( )
A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
9.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
10.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
A. B. C. D.
11.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )
A.125° B.75° C.65° D.55°
12.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.
14.如图,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_____.
15.数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________.
16.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.
17.计算2x3·x2的结果是_______.
18.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y= (x>0)的图象经过点B.
(1)求点B的坐标和反比例函数的关系式;
(2)如图2,将线段OA延长交y= (x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.
20.(6分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
21.(6分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:1.求的值.
22.(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.
(1)分别就甲、乙两家商场写出y关于x的函数解析式;
(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
23.(8分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a=20,b=10,求整个长方形运动场的面积.
24.(10分)如图,已知∠AOB=45°,AB⊥OB,OB=1.
(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);
(1)若M为AO的中点,求AM的长.
25.(10分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:
等级
非常了解
比较了解
只听说过
不了解
频数
40
120
36
4
频率
0.2
m
0.18
0.02
(1)本次问卷调查取样的样本容量为 ,表中的m值为 ;
(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;
(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?
26.(12分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.
(1)求证:△ADC≌△FDB;
(2)求证:
(3)判断△ECG的形状,并证明你的结论.
27.(12分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
解:∵-1<-1<0<2,∴最小的是-1.故选D.
2、D
【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
【详解】
解:∵∠ACB=90°,AB=5,AC=4,
∴BC=3,
在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
∴∠A=∠BCD.
∴tan∠BCD=tanA==,
故选D.
【点睛】
本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
3、C
【解析】
科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
【详解】
42.4亿=4240000000,
用科学记数法表示为:4.24×1.
故选C.
【点睛】
考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
4、C
【解析】
如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
【详解】
解:如图,作CH⊥y轴于H.
由题意B(0,2),
∵
∴CH=1,
∵tan∠BOC=
∴OH=3,
∴C(﹣1,3),
把点C(﹣1,3)代入,得到k2=﹣3,
故选C.
【点睛】
本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
5、A
【解析】
根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
【详解】
∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<,
故选A.
【点睛】
本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
6、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
7、A
【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.
【详解】
-1的相反数为1,则1的绝对值是1.
故选A.
【点睛】
本题考查了绝对值和相反数,正确把握相关定义是解题的关键.
8、B
【解析】
试题解析:0.00 000 069=6.9×10-7,
故选B.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
9、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
10、B
【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
【详解】
过F作FH⊥AD于H,交ED于O,则FH=AB=1.
∵BF=1FC,BC=AD=3,
∴BF=AH=1,FC=HD=1,
∴AF===,
∵OH∥AE,
∴=,
∴OH=AE=,
∴OF=FH﹣OH=1﹣=,
∵AE∥FO,∴△AME∽△FMO,
∴=,∴AM=AF=,
∵AD∥BF,∴△AND∽△FNB,
∴=,
∴AN=AF=,
∴MN=AN﹣AM=﹣=,故选B.
【点睛】
构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
11、D
【解析】
延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
【详解】
延长CB,延长CB,
∵AD∥CB,
∴∠1=∠ADE=145,
∴∠DBC=180−∠1=180−125=55.
故答案选:D.
【点睛】
本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
12、C
【解析】
分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
详解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为.
故选:C.
点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
列表得:
第一次
第二次
黑
白
白
黑
黑,黑
白,黑
白,黑
白
黑,白
白,白
白,白
白
黑,白
白,白
白,白
∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,
∴两次都摸到黑球的概率是.
故答案为:.
【点睛】
考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.
14、3
【解析】
延长AC和BD,交于M点,M、E、F三点共线,EF=MF-ME.
【详解】
延长AC和BD,交于M点,M、E、F三点共线,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.
【点睛】
本题考查了直角三角形斜边中线的性质.
15、
【解析】
根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得.
【详解】
解:如图示,
根据题意可得AB=6cm,
设正方体的棱长为xcm,则AC=x,BC=3x,
根据勾股定理,AB2=AC2+BC2,即,
解得
故答案为:.
【点睛】
本题考查了勾股定理的应用,正确理解题意是解题的关键.
16、y=160﹣80x(0≤x≤2)
【解析】
根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.
【详解】
解:∵汽车的速度是平均每小时80千米,
∴它行驶x小时走过的路程是80x,
∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).
【点睛】
本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.
17、
【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.
故答案为:2x5
18、
【解析】
甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据甲、乙两厂5月份用水量与6月份用水量列出关于x、y的方程组即可.
【详解】
甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,
根据题意得:,
故答案为:.
【点睛】
本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2
【解析】
试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;
(2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; ②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.
试题解析:(1)过点A作AP⊥x轴于点P,
则AP=1,OP=2,
又∵AB=OC=3,
∴B(2,4).,
∵反比例函数y= (x>0)的图象经过的B,
∴4=,
∴k=8.
∴反比例函数的关系式为y=;
(2)①由点A(2,1)可得直线OA的解析式为y=x.
解方程组,得,.
∵点D在第一象限,
∴D(4,2).
由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;
②把y=0代入y=-x+6,解得x=6,
∴E(6,0),
过点D分别作x轴的垂线,垂足分别为G,则G(4,0),
由勾股定理可得:ED=.
点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.
20、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
【解析】
(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
【详解】
(1)证明:过F作FH⊥BE于H点,
在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
所以四边形BHFC为矩形,
∴CF=BH,
∵BF=EF,FH⊥BE,
∴H为BE中点,
∴BE=2BH,
∴BE=2CF;
(2)四边形BFGN是菱形.
证明:
∵将线段EF绕点F顺时针旋转90°得FG,
∴EF=GF,∠GFE=90°,
∴∠EFH+∠BFH+∠GFB=90°
∵BN∥FG,
∴∠NBF+∠GFB=180°,
∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
∵∠ABC=90°,
∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
由BHFC是矩形可得HF=BC,
∵BC=AB,∴HF=AB,
在△ABN和△HFE中,,
∴△ABN≌△HFE,
∴NB=EF,
∵EF=GF,
∴NB=GF,
又∵NB∥GF,
∴NBFG是平行四边形,
∵EF=BF,∴NB=BF,
∴平行四边NBFG是菱形.
点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
21、
【解析】
先根据平行线的性质证明△ADE∽△FGH,再由线段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.
【详解】
解:∵DE∥BC,∴∠ADE=∠B,
∵FG∥AB,
∴∠FGH=∠B,
∴∠ADE=∠FGH,
同理:∠AED=∠FHG,
∴△ADE∽△FGH,
∴ ,
∵DE∥BC ,FG∥AB,
∴DF=BG,
同理:FE=HC,
∵BG︰GH︰HC=2︰4︰1,
∴设BG=2k,GH=4k,HC=1k,
∴DF=2k,FE=1k,
∴DE=5k,
∴.
【点睛】
本题考查了平行线的性质和三角形相似的判定和相似比.
22、(1)y1=0.85x,y2=0.75x+50 (x>200),y2=x (0≤x≤200);(2)x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.
【解析】
(1)根据单价乘以数量,可得函数解析式;
(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.
【详解】
(1)甲商场写出y关于x的函数解析式y1=0.85x,
乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50(x>200),
即y2=x(0≤x≤200);
(2)由y1>y2,得0.85x>0.75x+50,
解得x>500,
即当x>500时,到乙商场购物会更省钱;
由y1=y2得0.85x=0.75x+50,
即x=500时,到两家商场去购物花费一样;
由y1<y2,得0.85x<0.75x+500,
解得x<500,
即当x<500时,到甲商场购物会更省钱;
综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.
【点睛】
本题考查了一次函数的应用,分类讨论是解题关键.
23、(1)(2)(3)
【解析】
试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可.
试题解析:
(1)矩形B的长可表示为:a+b,宽可表示为:a-b,
∴每个B区矩形场地的周长为:2(a+b+a-b)=4a;
(2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,
∴整个矩形的周长为:2(2a+b+2a-b)=8a;
(3)矩形的面积为:S=(2a+b)(2a-b)= ,
把,代入得,S=4×202-102=4×400-100=1500.
点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.
24、(1)详见解析;(1).
【解析】
(1)以点M为顶点,作∠AMN=∠O即可;
(1)由∠AOB=45°,AB⊥OB,可知△AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.
【详解】
(1)作图如图所示;
(1)由题知△AOB为等腰Rt△AOB,且OB=1,
所以,AO=OB=1
又M为OA的中点,
所以,AM=1=
【点睛】
本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明△AOB为等腰为等腰直角三角形是解(1)的关键.
25、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人
【解析】
(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.
【详解】
解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6
(2)非常了解20%,比较了解60%;
非常了解的圆心角度数:360°×20%=72°
(3)1500×60%=900(人)
答:“比较了解”垃圾分类知识的人数约为900人.
【点睛】
此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.
26、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;
(2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;
(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.
【详解】
解:(1)∵AB=BC,BE平分∠ABC
∴BE⊥AC
∵CD⊥AB
∴∠ACD=∠ABE(同角的余角相等)
又∵CD=BD
∴△ADC≌△FDB
(2)∵AB=BC,BE平分∠ABC
∴AE=CE
则CE=AC
由(1)知:△ADC≌△FDB
∴AC=BF
∴CE=BF
(3)△ECG为等腰直角三角形,理由如下:
由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,
则∠EGC=2∠CBG=∠ABC=45°,
又∵BE⊥AC,
故△ECG为等腰直角三角形.
【点睛】
本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.
27、2.4元/米
【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
【详解】
解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
由题意列方程得:
解得
经检验,是原方程的解
(元/立方米)
答:今年居民用水的价格为每立方米元.
【点睛】
此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
西藏自治区左贡县市级名校2021-2022学年中考数学模拟试题含解析: 这是一份西藏自治区左贡县市级名校2021-2022学年中考数学模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是.,下列运算正确的是等内容,欢迎下载使用。
2022届西藏自治区工布江达县市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022届西藏自治区工布江达县市级名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列命题中真命题是等内容,欢迎下载使用。
2022届苏州市吴中区市级名校中考数学模拟试题含解析: 这是一份2022届苏州市吴中区市级名校中考数学模拟试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,在一组数据,如图,已知,,则的度数为,已知点 A等内容,欢迎下载使用。