|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析01
    2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析02
    2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析

    展开
    这是一份2022届浙江省Q21联盟市级名校中考适应性考试数学试题含解析,共22页。试卷主要包含了老师在微信群发了这样一个图,的绝对值是,剪纸是我国传统的民间艺术等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.计算tan30°的值等于( )
    A. B. C. D.
    2.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为( )

    A.(1,4) B.(7,4) C.(6,4) D.(8,3)
    3.二次函数y=﹣(x+2)2﹣1的图象的对称轴是(  )
    A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣2
    4.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )

    A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
    5.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )

    A.甲 B.乙 C.丙 D.丁
    6.的绝对值是( )
    A. B. C. D.
    7.已知是一个单位向量,、是非零向量,那么下列等式正确的是( )
    A. B. C. D.
    8.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为(  )

    A.1 B.2 C.3 D.8
    9.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为(   )
    A.﹣1 B.0 C.1 D.3
    10.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tan∠CBD=,则BD=_____.

    12.计算的结果是____.
    13.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.

    14.已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.
    15.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.
    16.使有意义的x的取值范围是______.
    三、解答题(共8题,共72分)
    17.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   .

    18.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
    19.(8分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.

    20.(8分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.
    (1)求证:△GBE∽△GEF.
    (2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.
    (3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.

    21.(8分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.

    请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
    22.(10分)已知抛物线y=ax2+ c(a≠0).
    (1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;
    (2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);
    (3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
    23.(12分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
    (1)在图1中证明小胖的发现;
    借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
    (2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
    (3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

    24. (1)计算:|-1|+(2017-π)0-()-1-3tan30°+;
    (2)化简:(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    tan30°= .故选C.
    2、B
    【解析】
    如图,

    经过6次反弹后动点回到出发点(0,3),
    ∵2018÷6=336…2,
    ∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
    点P的坐标为(7,4).
    故选C.
    3、D
    【解析】
    根据二次函数顶点式的性质解答即可.
    【详解】
    ∵y=﹣(x+2)2﹣1是顶点式,
    ∴对称轴是:x=-2,
    故选D.
    【点睛】
    本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
    4、B
    【解析】
    延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;
    【详解】
    延长AC交DE于点F.
    A. ∵∠α+∠β=180°,∠β=∠1+90°,
    ∴∠α=90°-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    B. ∵∠β﹣∠α=90°,∠β=∠1+90°,
    ∴∠α=∠1,
    ∴能使得AB∥DE;
    C.∵∠β=3∠α,∠β=∠1+90°,
    ∴3∠α=90°+∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    D.∵∠α+∠β=90°,∠β=∠1+90°,
    ∴∠α=-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    故选B.

    【点睛】
    本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.
    5、B
    【解析】
    利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;
    【详解】
    ∵五边形ABCDE是正五边形,△ABG是等边三角形,
    ∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,
    ∴DG垂直平分线段AB,
    ∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,
    ∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,
    ∴∠CDF=∠EDF=∠CFD=72°,
    ∴△CDF是等腰三角形.
    故丁、甲、丙正确.
    故选B.
    【点睛】
    本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    6、C
    【解析】
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
    【详解】
    在数轴上,点到原点的距离是,
    所以,的绝对值是,
    故选C.
    【点睛】
    错因分析  容易题,失分原因:未掌握绝对值的概念.
    7、B
    【解析】
    长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.
    【详解】
    A. 由于单位向量只限制长度,不确定方向,故错误;
    B. 符合向量的长度及方向,正确;
    C. 得出的是a的方向不是单位向量,故错误;
    D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.
    故答案选B.
    【点睛】
    本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
    8、B
    【解析】
    连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可.
    【详解】
    解:
    由题意得,当点P为劣弧AB的中点时,PQ最小,
    连接OP、OA,
    由垂径定理得,点Q在OP上,AQ=AB=4,
    在Rt△AOB中,OQ==3,
    ∴PQ=OP-OQ=2,
    故选:B.
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
    9、D
    【解析】
    分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.
    详解:由题意得,
    (-4)2-4(c+1)=0,
    c=3.
    故选D.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    10、A
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
    考点:中心对称图形;轴对称图形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2.
    【解析】
    由tan∠CBD== 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.
    【详解】
    解:在Rt△BCD中,∵tan∠CBD==,
    ∴设CD=3a、BC=4a,
    则BD=AD=5a,
    ∴AC=AD+CD=5a+3a=8a,
    在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
    解得:a= 或a=-(舍),
    则BD=5a=2,
    故答案为2.
    【点睛】
    本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图.
    12、
    【解析】
    原式= ,
    故答案为.
    13、10,,.
    【解析】
    解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;
    如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;
    如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.
    故答案为10,,.

    14、3
    【解析】
    ∵-3、3, -2、1、3、0、4、x的平均数是1,
    ∴-3+3-2+1+3+0+4+x=8
    ∴x=2,
    ∴一组数据-3、3, -2、1、3、0、4、2,
    ∴众数是3.
    故答案是:3.
    15、4或1
    【解析】
    ∵两圆内切,一个圆的半径是6,圆心距是2,
    ∴另一个圆的半径=6-2=4;
    或另一个圆的半径=6+2=1,
    故答案为4或1.
    【点睛】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.
    16、
    【解析】
    二次根式有意义的条件.
    【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.

    三、解答题(共8题,共72分)
    17、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
    【解析】
    (1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
    【详解】
    (1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);

    (2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
    故答案为(1)(2,-2);(2)(1,0)
    【点睛】
    此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
    18、 (1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.
    【解析】
    【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;
    (2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;
    (3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.
    【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;
    (2)∵100﹣x≤2x,
    ∴x≥,
    ∵y=﹣100x+50000中k=﹣100<0,
    ∴y随x的增大而减小,
    ∵x为正数,
    ∴x=34时,y取得最大值,最大值为46600,
    答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;
    (3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
    33≤x≤60,
    ①当0<a<100时,y随x的增大而减小,
    ∴当x=34时,y取最大值,
    即商店购进34台A型电脑和66台B型电脑的销售利润最大.
    ②a=100时,a﹣100=0,y=50000,
    即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;
    ③当100<a<200时,a﹣100>0,y随x的增大而增大,
    ∴当x=60时,y取得最大值.
    即商店购进60台A型电脑和40台B型电脑的销售利润最大.
    【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.
    19、灯杆AB的长度为2.3米.
    【解析】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.设AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.
    【详解】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.

    由题意得:∠ADE=α,∠E=45°.
    设AF=x.
    ∵∠E=45°,∴EF=AF=x.
    在Rt△ADF中,∵tan∠ADF=,∴DF==.
    ∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.
    ∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.
    答:灯杆AB的长度为2.3米.
    【点睛】
    本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.
    20、(1)见解析;(2)y=4﹣x+(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4﹣.
    【解析】
    (1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;
    (2)先判断出△BEG∽△CFE进而得出CF=
    ,即可得出结论;
    (3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;
    ②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.
    【详解】
    (1)如图1,延长FE交AB的延长线于F',

    ∵点E是BC的中点,
    ∴BE=CE=2,
    ∵四边形ABCD是正方形,
    ∴AB∥CD,
    ∴∠F'=∠CFE,
    在△BEF'和△CEF中,

    ∴△BEF'≌△CEF,
    ∴BF'=CF,EF'=EF,
    ∵∠GEF=90°,
    ∴GF'=GF,
    ∴∠BGE=∠EGF,
    ∵∠GBE=∠GEF=90°,
    ∴△GBE∽△GEF;
    (2)∵∠FEG=90°,
    ∴∠BEG+∠CEF=90°,
    ∵∠BEG+∠BGE=90°,
    ∴∠BGE=∠CEF,
    ∵∠EBG=∠C=90°,
    ∴△BEG∽△CFE,
    ∴,
    由(1)知,BE=CE=2,
    ∵AG=x,
    ∴BG=4﹣x,
    ∴,
    ∴CF=,
    由(1)知,BF'=CF=,
    由(1)知,GF'=GF=y,
    ∴y=GF'=BG+BF'=4﹣x+
    当CF=4时,即:=4,
    ∴x=3,(0≤x≤3),
    即:y关于x的函数表达式为y=4﹣x+(0≤x≤3);
    (3)∵AC是正方形ABCD的对角线,
    ∴∠BAC=∠BCA=45°,
    ∵△AGQ与△CEP相似,
    ∴①△AGQ∽△CEP,
    ∴∠AGQ=∠CEP,
    由(2)知,∠CEP=∠BGE,
    ∴∠AGQ=∠BGE,
    由(1)知,∠BGE=∠FGE,
    ∴∠AGQ=∠BGQ=∠FGE,
    ∴∠AGQ+∠BGQ+∠FGE=180°,
    ∴∠BGE=60°,
    ∴∠BEG=30°,
    在Rt△BEG中,BE=2,
    ∴BG=,
    ∴AG=AB﹣BG=4﹣,
    ②△AGQ∽△CPE,
    ∴∠AQG=∠CEP,
    ∵∠CEP=∠BGE=∠FGE,
    ∴∠AQG=∠FGE,
    ∴EG∥AC,
    ∴△BEG∽△BCA,
    ∴,
    ∴,
    ∴BG=2,
    ∴AG=AB﹣BG=2,
    即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.
    【点睛】
    本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.
    21、(1)20;(2)40,1;(3).
    【解析】
    试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;
    (2)根据D级的人数求得D等级扇形圆心角的度数和m的值;
    (3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.
    试题解析:解:(1)根据题意得:3÷15%=20(人),故答案为20;
    (2)C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=1°;
    故答案为40、1.
    (3)列表如下:

    所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生= =.
    22、(1);(2)详见解析;(3)为定值,=
    【解析】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),用待定系数法求解即可;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直线AB的解析式即可得到结论;
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    由PQ∥ON,可得ON=amt+at2,OM= –amt+at2,然后把ON,OM,OC的值代入整理即可.
    【详解】
    (1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),

    解之得

    ∴;
    (2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),

    ∵OA⊥OB,
    ∴∠AOE=∠OBF,
    ∴△AOE∽△OBF,
    ∴,,,
    直线AB过点A(m,am2)、点B(n,an2),
    ∴过点(0,);
    (3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
    ∵PQ∥ON,

    ∴,
    ON=====at(m+t)= amt+at2,
    同理:OM= –amt+at2,
    所以,OM+ON= 2at2=–2c=OC,
    所以,=.
    【点睛】
    本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.
    23、(1)证明见解析;(2)证明见解析;(3)∠EAF =m°.
    【解析】
    分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
    (2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.
    详(1)证明:如图1中,

    ∵∠BAC=∠DAE,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC,
    ∴BD=EC.
    (2)证明:如图2中,延长DC到E,使得DB=DE.

    ∵DB=DE,∠BDC=60°,
    ∴△BDE是等边三角形,
    ∴∠BD=BE,∠DBE=∠ABC=60°,
    ∴∠ABD=∠CBE,
    ∵AB=BC,
    ∴△ABD≌△CBE,
    ∴AD=EC,
    ∴BD=DE=DC+CE=DC+AD.
    ∴AD+CD=BD.
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.

    由(1)可知△EAB≌△GAC,
    ∴∠1=∠2,BE=CG,
    ∵BD=DC,∠BDE=∠CDM,DE=DM,
    ∴△EDB≌△MDC,
    ∴EM=CM=CG,∠EBC=∠MCD,
    ∵∠EBC=∠ACF,
    ∴∠MCD=∠ACF,
    ∴∠FCM=∠ACB=∠ABC,
    ∴∠1=3=∠2,
    ∴∠FCG=∠ACB=∠MCF,
    ∵CF=CF,CG=CM,
    ∴△CFG≌△CFM,
    ∴FG=FM,
    ∵ED=DM,DF⊥EM,
    ∴FE=FM=FG,
    ∵AE=AG,AF=AF,
    ∴△AFE≌△AFG,
    ∴∠EAF=∠FAG=m°.
    点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
    24、(1)-2(2)a+3,7
    【解析】
    (1)先根据绝对值、零次方、负整数指数幂、立方根的意义和特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;
    (2)先根据分式的运算法则把(+)÷化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.
    【详解】
    (1)原式=-1+1-4-3×+2=-2;
    (2)原式=[-]÷
    =(-)÷

    =a+3,
    ∵a≠-3,2,3,∴a=4或a=5,
    取a=4,则原式=7.
    【点睛】
    本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.

    相关试卷

    浙江省杭州市西湖区市级名校2022年中考适应性考试数学试题含解析: 这是一份浙江省杭州市西湖区市级名校2022年中考适应性考试数学试题含解析,共18页。试卷主要包含了已知,如果一次函数y=kx+b,下列运算正确的是,下列命题中真命题是等内容,欢迎下载使用。

    孝感市市级名校2021-2022学年中考适应性考试数学试题含解析: 这是一份孝感市市级名校2021-2022学年中考适应性考试数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是,下列命题是真命题的是等内容,欢迎下载使用。

    2022年浙江省衢州市Q21教联盟中考数学适应性模拟试题含解析: 这是一份2022年浙江省衢州市Q21教联盟中考数学适应性模拟试题含解析,共19页。试卷主要包含了一、单选题,已知二次函数y=a,如图,,,则的大小是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map