|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届浙江省温州市翔升达标名校中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    2022届浙江省温州市翔升达标名校中考数学全真模拟试卷含解析01
    2022届浙江省温州市翔升达标名校中考数学全真模拟试卷含解析02
    2022届浙江省温州市翔升达标名校中考数学全真模拟试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省温州市翔升达标名校中考数学全真模拟试卷含解析

    展开
    这是一份2022届浙江省温州市翔升达标名校中考数学全真模拟试卷含解析,共18页。试卷主要包含了的算术平方根是,下列各式计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
    A.205万 B. C. D.
    2.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= (  )

    A.70° B.110° C.130° D.140°
    3.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为  

    A.6 B.8 C.10 D.12
    4.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从
    点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为

    A. B. C. D.
    5.的算术平方根是( )
    A.9 B.±9 C.±3 D.3
    6.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为(  )

    A.54° B.36° C.30° D.27°
    7.将(x+3)2﹣(x﹣1)2分解因式的结果是(  )
    A.4(2x+2) B.8x+8 C.8(x+1) D. 4(x+1)
    8.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )

    A.6 B.8 C.10 D.12
    9.下列各式计算正确的是( )
    A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
    10.下列美丽的壮锦图案是中心对称图形的是(  )
    A. B. C. D.
    11.把不等式组的解集表示在数轴上,下列选项正确的是(  )
    A. B.
    C. D.
    12.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为(  )
    A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×108
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.

    14.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)
    15.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.

    16.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.

    17.已知式子有意义,则x的取值范围是_____
    18.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    20.(6分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:
    车型
    起步公里数
    起步价格
    超出起步公里数后的单价
    普通燃油型
    3
    13元
    2.3元/公里
    纯电动型
    3
    8元
    2元/公里
    张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.
    21.(6分)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
    (2)先化简,再求值•(a2﹣b2),其中a=,b=﹣2.
    22.(8分)如下表所示,有A、B两组数:

    第1个数
    第2个数
    第3个数
    第4个数
    ……
    第9个数
    ……
    第n个数
    A组
    ﹣6
    ﹣5
    ﹣2

    ……
    58
    ……
    n2﹣2n﹣5
    B组
    1
    4
    7
    10
    ……
    25
    ……

    (1)A组第4个数是   ;用含n的代数式表示B组第n个数是   ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
    23.(8分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.

    24.(10分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.

    25.(10分)先化简,再在1,2,3中选取一个适当的数代入求值.
    26.(12分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
    (1)求证:AE•FD=AF•EC;
    (2)求证:FC=FB;
    (3)若FB=FE=2,求⊙O的半径r的长.

    27.(12分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
    (1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
    求证:①PN=PF;②DF+DN=DP;
    (2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】2 050 000将小数点向左移6位得到2.05,
    所以2 050 000用科学记数法表示为:20.5×106,
    故选C.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、D
    【解析】
    ∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'
    =360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.
    3、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    连接AD,

    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.
    故选C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    4、B
    【解析】
    分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:
    ∵等边三角形ABC的边长为3,N为AC的三等分点,
    ∴AN=1。∴当点M位于点A处时,x=0,y=1。
    ①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;
    ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。
    故选B。
    5、D
    【解析】
    根据算术平方根的定义求解.
    【详解】
    ∵=9,
    又∵(±1)2=9,
    ∴9的平方根是±1,
    ∴9的算术平方根是1.
    即的算术平方根是1.
    故选:D.
    【点睛】
    考核知识点:算术平方根.理解定义是关键.
    6、D
    【解析】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.
    7、C
    【解析】
    直接利用平方差公式分解因式即可.
    【详解】
    (x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).
    故选C.
    【点睛】
    此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
    8、B
    【解析】
    分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.
    详解:如图,过点D作DE⊥AB于E,

    ∵AB=8,CD=2,
    ∵AD是∠BAC的角平分线,
    ∴DE=CD=2,
    ∴△ABD的面积
    故选B.
    点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.
    9、C
    【解析】
    根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
    【详解】
    A. a+3a=4a,故不正确;
    B. (–a2)3=(-a)6 ,故不正确;
    C. a3·a4=a7 ,故正确;
    D. (a+b)2=a2+2ab+b2,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
    10、A
    【解析】
    【分析】根据中心对称图形的定义逐项进行判断即可得.
    【详解】A、是中心对称图形,故此选项正确;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误,
    故选A.
    【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    11、C
    【解析】
    求得不等式组的解集为x<﹣1,所以C是正确的.
    【详解】
    解:不等式组的解集为x<﹣1.
    故选C.
    【点睛】
    本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    12、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:5300万=53000000=.
    故选C.
    【点睛】
    在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.
    考点:1.解直角三角形、2.垂径定理.
    14、=
    【解析】
    探究规律后,写出第n个等式即可求解.
    【详解】
    解:



    则第n个等式为
    故答案为:
    【点睛】
    本题主要考查二次根式的应用,找到规律是解题的关键.
    15、2
    【解析】
    连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.
    【详解】
    连接OC,

    ∵PC是⊙O的切线,
    ∴OC⊥PC,
    ∴∠OCP=90°,
    ∵PC=2,OC=2,
    ∴OP===4,
    ∴∠OPC=30°,
    ∴∠COP=60°,
    ∵OC=OB=2,
    ∴△OCB是等边三角形,
    ∴BC=OB=2,
    故答案为2
    【点睛】
    本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、
    【解析】
    试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:
    根据勾股定理得:,
    由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,
    ∴×5BD=4,解得:BD=.
    考点:1.网格型问题;2.勾股定理;3.三角形的面积.
    17、x≤1且x≠﹣1.
    【解析】
    根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.
    故答案为x≤1且x≠﹣1.
    18、6
    【解析】
    点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;
    【详解】
    解:点P在以O为圆心OA为半径的圆上,
    ∴P是两个圆的交点,
    当⊙O与⊙M外切时,AB最小,
    ∵⊙M的半径为2,圆心M(3,4),
    ∴PM=5,
    ∴OA=3,
    ∴AB=6,
    故答案为6;
    【点睛】
    本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    20、8.2 km
    【解析】
    首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.
    【详解】
    解:设小明家到单位的路程是x千米.
    依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.
    解得:x=8.2
    答:小明家到单位的路程是8.2千米.
    【点睛】
    本题考查一元一次方程的应用,找准等量关系是解题关键.
    21、 (1)-2 (2)-
    【解析】
    试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
    (2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
    解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
    =2﹣2×+1﹣3
    =2﹣+1﹣3
    =﹣2;
    (2)•(a2﹣b2)
    =•(a+b)(a﹣b)
    =a+b,
    当a=,b=﹣2时,原式=+(﹣2)=﹣.
    22、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
    【解析】
    (1)将n=4代入n2-2n-5中即可求解;
    (2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
    (3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
    【详解】
    解:(1))∵A组第n个数为n2-2n-5,
    ∴A组第4个数是42-2×4-5=3,
    故答案为3;
    (2)第n个数是.
    理由如下:
    ∵第1个数为1,可写成3×1-2;
    第2个数为4,可写成3×2-2;
    第3个数为7,可写成3×3-2;
    第4个数为10,可写成3×4-2;
    ……
    第9个数为25,可写成3×9-2;
    ∴第n个数为3n-2;
    故答案为3n-2;
    (3)不存在同一位置上存在两个数据相等;
    由题意得,,
    解之得,
    由于是正整数,所以不存在列上两个数相等.
    【点睛】
    本题考查了数字的变化类,正确的找出规律是解题的关键.
    23、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
    【解析】
    【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
    (2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
    【详解】(1)当x=1时,n=﹣×1+4=1,
    ∴点B的坐标为(1,1).
    ∵反比例函数y=过点B(1,1),
    ∴k=1×1=1;
    (2)∵k=1>0,
    ∴当x>0时,y随x值增大而减小,
    ∴当2≤x≤1时,1≤y≤2.
    【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
    24、 (1)26°;(2)1.
    【解析】
    试题分析:(1)根据垂径定理,得到,再根据圆周角与圆心角的关系,得知∠E=∠O,据此即可求出∠DEB的度数;
    (2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.
    试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,
    ∴,
    ∴∠DEB=∠AOD=×52°=26°;
    (2)∵AB是⊙O的一条弦,OD⊥AB,
    ∴AC=BC,即AB=2AC,
    在Rt△AOC中,AC===4,
    则AB=2AC=1.
    考点:垂径定理;勾股定理;圆周角定理.
    25、,当x=2时,原式=.
    【解析】
    试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.
    试题解析:
    原式===
    当x=2时,原式=.
    26、(1)详见解析;(2)详见解析;(3)2.
    【解析】
    (1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.
    (2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可.
    (3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG
    的长,从而得到⊙O的半径r.
    27、(1)①证明见解析;②证明见解析;(2),证明见解析.
    【解析】
    (1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;
    ②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;
    (2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.
    【详解】
    解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM⊥PD,∠DMP=45°,
    ∴DP=MP.
    ∵PM⊥PD,PF⊥PN,
    ∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
    在△PMN和△PDF中, ,
    ∴△PMN≌△PDF(ASA),
    ∴PN=PF,MN=DF;
    ②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
    ∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
    (2).理由如下:
    过点P作PM1⊥PD,PM1交AD边于点M1,如图,
    ∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
    ∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
    在△PM1N和△PDF中,
    ∴△PM1N≌△PDF(ASA),∴M1N=DF,
    由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
    ∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
    ∴DN﹣DF=DP.

    【点睛】
    本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.

    相关试卷

    浙江省温州市翔升2022年中考数学模拟精编试卷含解析: 这是一份浙江省温州市翔升2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了下列图形不是正方体展开图的是,在平面直角坐标系内,点P等内容,欢迎下载使用。

    浙江省温州市翔升2022年中考五模数学试题含解析: 这是一份浙江省温州市翔升2022年中考五模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,直线与y轴交于点,分式有意义,则x的取值范围是,下列说法正确的是等内容,欢迎下载使用。

    2022年浙江省绍兴县重点达标名校中考数学全真模拟试卷含解析: 这是一份2022年浙江省绍兴县重点达标名校中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,四组数中,一、单选题,化简的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map