2022届浙江省杭州市富阳区城区中考数学全真模拟试题含解析
展开
这是一份2022届浙江省杭州市富阳区城区中考数学全真模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列函数是二次函数的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.函数与在同一坐标系中的大致图象是( )
A、 B、 C、 D、
2.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
3.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )
A.8 B.6 C.4 D.2
4.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
A. B. C. D.
5.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
A.12 B.14 C.15 D.25
6.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是( )
A.(3,1) B.(2,2) C.(1,3) D.(3,0)
7.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )
A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×1010
8.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
A. B. C. D.
9.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为( )
A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×108
10.下列函数是二次函数的是( )
A. B. C. D.
11.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
12.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知,那么__.
14.计算:(a2)2=_____.
15.=__________
16.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
17.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.
18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于____;
(2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
20.(6分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(元)
19
20
21
30
(件)
62
60
58
40
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
21.(6分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)
22.(8分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE
求证:(1)△ABF≌△DCE;四边形ABCD是矩形.
23.(8分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.
24.(10分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角.树杆旁有一座与地面垂直的铁塔,测得米,塔高米.在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、、、在同一条直线上,点、、也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到,参考数据:,,).
25.(10分)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.
(1)求线段 CD 的长;(2)求△ADE 的面积.
26.(12分)先化简,再求值:,其中x=1.
27.(12分)计算:4sin30°+(1﹣)0﹣|﹣2|+()﹣2
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D.
【解析】
试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
故选D.
考点:一次函数和反比例函数的图象.
2、D
【解析】
A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
3、A
【解析】
试题解析:由于点A、B在反比例函数图象上关于原点对称,
则△ABC的面积=2|k|=2×4=1.
故选A.
考点:反比例函数系数k的几何意义.
4、D
【解析】
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
∴OD=AE=5,
,
∴正方形的面积是: ,故选D.
5、C
【解析】
先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
【详解】
∴三角形的两边长分别为5和7,
∴2
相关试卷
这是一份2024年浙江省杭州市富阳区中考数学一模试卷(含详细答案解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省杭州市富阳区城区联考2022年中考试题猜想数学试卷含解析,共17页。试卷主要包含了一次函数的图像不经过的象限是,化简的结果是等内容,欢迎下载使用。
这是一份2022年浙江省杭州市富阳区富春中学中考四模数学试题含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数的最大值为,在实数,有理数有,在中,,,,则的值是等内容,欢迎下载使用。