2022届浙江省乐清市育英寄宿校中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
A. B. C. D.
2.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
3.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )
A.9π B.10π C.11π D.12π
4.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
A. B.
C. D.
5.下列四个几何体中,主视图与左视图相同的几何体有( )
A.1个 B.2个 C.3个 D.4个
6.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A. B. C.且 D.
7.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为( )
A.10° B.15° C.20° D.25°
8.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )
A.3×109 B.3×108 C.30×108 D.0.3×1010
9.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是( )
A.0 B.1 C.2 D.3
10.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是( )
A. B.2 C. D.2
11.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )
A.1.35×106 B.1.35×105 C.13.5×104 D.135×103
12.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )
A.2人 B.16人
C.20人 D.40人
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,反比例函数(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为 .
14.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.
15.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.
16.在实数范围内分解因式: =_________
17.分解因式:2a2﹣2=_____.
18.把多项式a3-2a2+a分解因式的结果是
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:
气温x(℃)
0
5
10
15
20
音速y(m/s)
331
334
337
340
343
(1)求y与x之间的函数关系式:
(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
20.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
(1)求一次至少购买多少只计算器,才能以最低价购买?
(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
21.(6分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
22.(8分)如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
23.(8分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.
(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.
24.(10分)计算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷2
25.(10分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
26.(12分)解不等式组:,并将它的解集在数轴上表示出来.
27.(12分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.
基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.
(1)在点,,,中,抛物线的关联点是_____ ;
(2)如图2,在矩形ABCD中,点,点,
①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;
②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
【详解】作直径CG,连接OD、OE、OF、DG.
∵CG是圆的直径,
∴∠CDG=90°,则DG==8,
又∵EF=8,
∴DG=EF,
∴,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
故选A.
【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
2、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
3、B
【解析】
【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.
【详解】由题意可得此几何体是圆锥,
底面圆的半径为:2,母线长为:5,
故这个几何体的侧面积为:π×2×5=10π,
故选B.
【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.
4、D
【解析】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
可以列出方程:.
故选D.
5、D
【解析】
解:①正方体的主视图与左视图都是正方形;
②球的主视图与左视图都是圆;
③圆锥主视图与左视图都是三角形;
④圆柱的主视图和左视图都是长方形;
故选D.
6、C
【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴ ,
解得:k<1且k≠1.
故选:C.
【点睛】
本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
7、B
【解析】
根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答
【详解】
根据题意可知∠AOB=∠ABO=45°,∠DOC=30°
∵BO∥CD
∴∠BOC=∠DCO=90°
∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°
故选B
【点睛】
此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等
8、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
将数据30亿用科学记数法表示为,
故选A.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
9、D
【解析】
根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
【详解】
∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
∴∠A=∠EBA,∠CBE=∠EBA,
∴∠A=∠CBE=∠EBA,
∵∠C=90°,
∴∠A+∠CBE+∠EBA=90°,
∴∠A=∠CBE=∠EBA=30°,故①选项正确;
∵∠A=∠EBA,∠EDB=90°,
∴AD=BD,故②选项正确;
∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
∴EC=ED(角平分线上的点到角的两边距离相等),
∴点E到AB的距离等于CE的长,故③选项正确,
故正确的有3个.
故选D.
【点睛】
此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
10、A
【解析】
试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
在Rt△DHC中,DH==2,
∴EF=DH=.
故选A.
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
11、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:135000=1.35×105
故选B.
【点睛】
此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、C
【解析】
先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
【详解】
400×人.
故选C.
【点睛】
考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题分析:如图,连接OB.
∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=×1=.
∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.
∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中点.
∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.
14、10°
【解析】
根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.
【详解】
∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
∴AD=BD,AE=CE,
∴∠B=∠BAD,∠C=∠CAE,
∵∠B=40°,∠C=45°,
∴∠B+∠C=85°,
∴∠BAD+∠CAE=85°,
∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,
故答案为10°
【点睛】
本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
15、(,0)
【解析】
试题解析:过点B作BD⊥x轴于点D,
∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO与△BCD中,
,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴设反比例函数的解析式为y=,
将B(3,1)代入y=,
∴k=3,
∴y=,
∴把y=2代入y=,
∴x=,
当顶点A恰好落在该双曲线上时,
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故答案为(,0).
16、2(x+)(x-).
【解析】
先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
【详解】
2x2-6=2(x2-3)=2(x+)(x-).
故答案为2(x+)(x-).
【点睛】
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
17、2(a+1)(a﹣1).
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解.
【详解】
解:2a2﹣2,
=2(a2﹣1),
=2(a+1)(a﹣1).
【点睛】
本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
18、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) y=x+331;(2)1724m.
【解析】
(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.
【详解】
解:(1)设y=kx+b,∴
∴k=,
∴y=x+331.
(2)当x=23时,y= x23+331=344.8
∴5344.8=1724.
∴此人与烟花燃放地相距约1724m.
【点睛】
此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.
20、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
【解析】
试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
答:一次至少买1只,才能以最低价购买;
(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
综上所述:;
(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
即出现了卖46只赚的钱比卖1只赚的钱多的现象.
当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
21、(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.
【解析】
(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;
(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.
【详解】
解:(1)设第一批T恤衫每件进价是x元,由题意,得
,
解得x=90
经检验x=90是分式方程的解,符合题意.
答:第一批T恤衫每件的进价是90元.
(2)设剩余的T恤衫每件售价y元.
由(1)知,第二批购进=50件.
由题意,得120×50×+y×50×﹣4950≥650,
解得y≥80.
答:剩余的T恤衫每件售价至少要80元.
22、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
【解析】
(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;
(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
【详解】
(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
∴a=-1,b=-1,
∴A(-1,3),B(3,-1),
∵点A(-1,3)在反比例函数y=上,
∴k=-1×3=-3,
∴反比例函数解析式为y=;
(2)设点P(n,-n+2),
∵A(-1,3),
∴C(-1,0),
∵B(3,-1),
∴D(3,0),
∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,
∵S△ACP=S△BDP,
∴×3×|n+1|=×1×|3−n|,
∴n=0或n=−3,
∴P(0,2)或(−3,5);
(3)设M(m,0)(m>0),
∵A(−1,3),B(3,−1),
∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,
∵△MAB是等腰三角形,
∴①当MA=MB时,
∴(m+1)2+9=(m−3)2+1,
∴m=0,(舍)
②当MA=AB时,
∴(m+1)2+9=32,
∴m=−1+或m=−1−(舍),
∴M(−1+,0)
③当MB=AB时,(m−3)2+1=32,
∴m=3+或m=3−(舍),
∴M(3+,0)
即:满足条件的M(−1+,0)或(3+,0).
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.
23、 (1) 1;(1) ≤m<.
【解析】
(1)在Rt△ABP中利用勾股定理即可解决问题;
(1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
【详解】
解:(1):(1)如图1中,设PD=t.则PA=5-t.
∵P、B、E共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍弃),
∴t=1时,B、E、P共线.
(1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.
作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3
易证四边形EMCQ是矩形,
∴CM=EQ=1,∠M=90°,
∴EM=,
∵∠DAC=∠EDM,∠ADC=∠M,
∴△ADC∽△DME,
∴
∴
∴AD=,
如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3
在Rt△ECQ中,QC=DM=,
由△DME∽△CDA,
∴
∴,
∴AD=,
综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.
【点睛】
本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.
24、
【解析】
按照实数的运算顺序进行运算即可.
【详解】
解:原式
【点睛】
本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.
25、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
【解析】
(1)根据①②③的规律即可得出第④个等式;
(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
【详解】
(1)∵22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
∴第④个等式为52﹣2×4=42+1,
故答案为:52﹣2×4=42+1,
(2)第n个等式为(n+1)2﹣2n=n2+1.
(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
【点睛】
本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
26、-1≤x<4,在数轴上表示见解析.
【解析】
试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
试题解析:
,
由①得,x<4;
由②得,x⩾−1.
故不等式组的解集为:−1⩽x<4.
在数轴上表示为:
27、 (1) (2)① ②
【解析】
【分析】(1)根据关联点的定义逐一进行判断即可得;
(2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;
②由①知,分两种情况画出图形进行讨论即可得.
【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;
,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;
,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;
,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,
故答案为;
(2)①当时,,,,,
此时矩形上的所有点都在抛物线的下方,
∴,
∴,
∵,
∴;
②由①,,
如图2所示时,CF最长,当CF=4时,即=4,解得:t=,
如图3所示时,DF最长,当DF=4时,即DF==4,解得 t=,
故答案为
【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.
浙江省乐清市育英寄宿学校2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份浙江省乐清市育英寄宿学校2023-2024学年九上数学期末学业质量监测试题含答案,共9页。试卷主要包含了若均为锐角,且,则.,如图,点A是反比例函数y=,若,且,则的值是,方程的根是等内容,欢迎下载使用。
2023-2024学年浙江省乐清市育英寄宿学校数学九上期末检测试题含答案: 这是一份2023-2024学年浙江省乐清市育英寄宿学校数学九上期末检测试题含答案,共7页。试卷主要包含了已知抛物线的解析式为y=.,下列根式是最简二次根式的是等内容,欢迎下载使用。
浙江省乐清市育英寄宿学校2023-2024学年数学八年级第一学期期末预测试题含答案: 这是一份浙江省乐清市育英寄宿学校2023-2024学年数学八年级第一学期期末预测试题含答案,共8页。试卷主要包含了在下列各数中,无理数有,在下列实数中,无理数是,如图,点表示的实数是等内容,欢迎下载使用。