2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
A. B. C. D.
2.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为( )
A. B.π C.50 D.50π
3.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
A.k>- B.k>-且 C.k<- D.k-且
4.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2
A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④
5.一个数和它的倒数相等,则这个数是( )
A.1 B.0 C.±1 D.±1和0
6.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
7.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是( )
A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
8.下列说法正确的是( )
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
9.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为( )
A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
10.下列运算正确的是( )
A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.
12.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.
13.计算:____.
14.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.
15.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
16.如图,已知AB∥CD,若,则=_____.
三、解答题(共8题,共72分)
17.(8分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.
求证:;
若的直径长8,,求BE的长.
18.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
19.(8分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.
20.(8分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)
21.(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
(1)选中的男主持人为甲班的频率是
(2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组
频数
频率
第一组(0≤x<15)
3
0.15
第二组(15≤x<30)
6
a
第三组(30≤x<45)
7
0.35
第四组(45≤x<60)
b
0.20
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
23.(12分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
24.计算:=_____.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.
考点:用列表法求概率.
2、A
【解析】
根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.
【详解】
解:圆锥的侧面积=•5•5=.
故选A.
【点睛】
本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
3、B
【解析】
在与一元二次方程有关的求值问题中,必须满足下列条件:
(1)二次项系数不为零;
(2)在有两个实数根下必须满足△=b2-4ac≥1.
【详解】
由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
因此可求得k>且k≠1.
故选B.
【点睛】
本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.
4、B
【解析】
首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.
∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,
∴△ABE≌△DCF,
∴∠ABE=∠DCF.
∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,
∴△ADG≌△CDG,
∴∠DAG=∠DCF,
∴∠ABE=∠DAG.
∵∠DAG+∠BAH=90°,
∴∠BAE+∠BAH=90°,
∴∠AHB=90°,
∴AG⊥BE,故③正确,
同理可证:△AGB≌△CGB.
∵DF∥CB,
∴△CBG∽△FDG,
∴△ABG∽△FDG,故①正确.
∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,
∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.
取AB的中点O,连接OD、OH.
∵正方形的边长为4,
∴AO=OH=×4=1,
由勾股定理得,OD=,
由三角形的三边关系得,O、D、H三点共线时,DH最小,
DH最小=1-1.
无法证明DH平分∠EHG,故②错误,
故①③④⑤正确.
故选B.
【点睛】
本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.
5、C
【解析】
根据倒数的定义即可求解.
【详解】
的倒数等于它本身,故符合题意.
故选:.
【点睛】
主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
6、A
【解析】
过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB
【详解】
如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,
∵两把完全相同的长方形直尺,
∴CE=CF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选A.
【点睛】
本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.
7、A
【解析】
结合向左平移的法则,即可得到答案.
【详解】
解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,
故选A.
【点睛】
此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.
8、D
【解析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
【详解】
解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
故选D
【点睛】
本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
9、C
【解析】
根据题意列出代数式,化简即可得到结果.
【详解】
根据题意得:a÷(1−20%)=a÷= a(元),
故答案选:C.
【点睛】
本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
10、B
【解析】
先根据同底数幂的乘法法则进行运算即可。
【详解】
A.;故本选项错误;
B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
C.;故本选项错误;
D. 不是同类项不能合并; 故本选项错误;
故选B.
【点睛】
先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案
【详解】
解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),
设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,
∴抛物线解析式为y=-0.5x1+1,
当水面下降1.5米,通过抛物线在图上的观察可转化为:
当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
可以通过把y=-1.5代入抛物线解析式得出:
-1.5=-0.5x1+1,
解得:x=±3,
1×3-4=1,
所以水面下降1.5m,水面宽度增加1米.
故答案为1.
【点睛】
本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.
12、5
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.005=5×10-1,
故答案为:5×10-1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
13、5.
【解析】
试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.
考点:绝对值计算.
14、48°
【解析】
连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
【详解】
连接OA,
∵五边形ABCDE是正五边形,
∴∠AOB==72°,
∵△AMN是正三角形,
∴∠AOM==120°,
∴∠BOM=∠AOM-∠AOB=48°,
故答案为48°.
点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
15、15
【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
详解:∵
当y=127时, 解得:x=43;
当y=43时,解得:x=15;
当y=15时, 解得 不符合条件.
则输入的最小正整数是15.
故答案为15.
点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
16、
【解析】
【分析】利用相似三角形的性质即可解决问题;
【详解】∵AB∥CD,
∴△AOB∽△COD,
∴,
故答案为.
【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2).
【解析】
先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;
作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.
【详解】
证明:,,
,
是的切线,
,
,
.
平分,
,
,
;
解:作于F,如图,
的直径长8,
.
,
,
,
,
在中,
设,则,
,即,解得,
.
故答案为(1)证明见解析;(2) .
【点睛】
本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.
18、(1)见解析;(2)见解析
【解析】
(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
【详解】
解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
∴四边形BCFE是平行四边形.
又∵BE=FE,∴四边形BCFE是菱形.
(2)∵∠BCF=120°,∴∠EBC=60°.
∴△EBC是等边三角形.
∴菱形的边长为4,高为.
∴菱形的面积为4×=.
19、见解析
【解析】
根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一.
【详解】
如图为画出的菱形:
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.
20、43米
【解析】
作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=,列出方程即可解决问题.
【详解】
解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.
在Rt△ABD中,∵∠ADB=45°,
∴AB=BD=x,
在Rt△AEC中,
tan∠ACE==tan37.5°≈0.77,
∴=0.77,
解得x≈43,
答:“小雁塔”的高AB的长度约为43米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
21、 (1) (2) ,图形见解析.
【解析】
(1)根据概率的定义即可求出;
(2)先根据题意列出树状图,再利用概率公式进行求解.
【详解】
(1)由题意P(选中的男主持人为甲班)=
(2)列出树状图如下
∴P(选中的男女主持人均为甲班的)=
【点睛】
此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
22、0.3 4
【解析】
(1)由统计图易得a与b的值,继而将统计图补充完整;
(2)利用用样本估计总体的知识求解即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
【详解】
(1)a=1﹣0.15﹣0.35﹣0.20=0.3;
∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
故答案为0.3,4;
补全统计图得:
(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
(3)画树状图得:
∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
【点睛】
本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)50;4;5;画图见解析;(2)144°;(3)64
【解析】
(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
【详解】
解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
∴=50(人).
∵课外阅读4小时的人数是32%,
∴50×32%=16(人),
∴男生人数=16﹣8=8(人);
∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
∴中位数是4小时,众数是5小时.
补全图形如图所示.
故答案为50,4,5;
(2)∵课外阅读5小时的人数是20人,
∴×360°=144°.
故答案为144°;
(3)∵课外阅读6小时的人数是4人,
∴800×=64(人).
答:九年级一周课外阅读时间为6小时的学生大约有64人.
【点睛】
本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
24、1
【解析】
首先计算负整数指数幂和开平方,再计算减法即可.
【详解】
解:原式=9﹣3=1.
【点睛】
此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数).
重庆市江北区市级名校2022年中考数学四模试卷含解析: 这是一份重庆市江北区市级名校2022年中考数学四模试卷含解析,共27页。试卷主要包含了下列分式是最简分式的是等内容,欢迎下载使用。
2022届四川省眉山市市级名校中考数学对点突破模拟试卷含解析: 这是一份2022届四川省眉山市市级名校中考数学对点突破模拟试卷含解析,共25页。
江苏省高淳区市级名校2022年中考数学对点突破模拟试卷含解析: 这是一份江苏省高淳区市级名校2022年中考数学对点突破模拟试卷含解析,共22页。